The reliably stable neural network controllers' synthesis with the transient process parameters optimization

Serhii Vladov, Anatoliy Sachenko, Victoria Vysotska, Yevhen Volkanin, Dmytro Kukharenko, Danylo Severynenko

Abstract


The subject of this paper is to develop a method for synthesizing stable neural network controllers with optimization of transient process parameters. The goal is to develop a method for synthesizing a neural network controller for control systems that guarantees the closed-loop system stability through automated selection of Lyapunov function with the involvement of an additional neural network trained on the data obtained in the solving process the integer linear programming problem. The tasks to be solved are: study the stability of a closed-loop control system with a neural network controller, train the neurocontroller and Lyapunov neural network function, create an optimization model for the loss function minimization, and conduct a computational experiment as an example of the neural network stabilizing controller synthesis. The methods used are: a neural network-based control object simulator training method described by an equations system taking into account the SmoothReLU activation function, a direct Lyapunov method to the closed-loop system stability guarantee, and a mixed integer programming method that allows minimizing losses and ensuring stability and minimum time regulation for solving the optimization problem. The following results were obtained: the neural network used made it possible to obtain results related to the transient process time reduction to 3.0 s and a 2.33-fold reduction in overregulation compared to the traditional controller (on the example of the TV3-117 turboshaft engine fuel consumption model). The results demonstrate the proposed approach's advantages, remarkably increasing the dynamic stability and parameter maintenance accuracy, and reducing fuel consumption fluctuations. Conclusions. This study is the first to develop a method for synthesizing a stabilizing neural network controller for helicopter turboshaft engines with guaranteed system stability based on Lyapunov theory. The proposed method's novelty lies in its linear approximation of the SmoothReLU activation function using binary variables, which allowed us to reduce the stability problem to an optimization problem using the mixed integer programming method. A system of constraints was developed that considers the control signal and stability conditions to minimize the system stabilization time. The results confirmed the proposed approach's effectiveness in increasing engine adaptability and energy efficiency in various operating modes.

Keywords


optimization; controller; neural network; Lyapunov function; mixed integer programming

Full Text:

PDF

References


Zhang, Y., Yao, Q., Luo, B., & Chen, N. Robust control of uncertain asymmetric hysteretic nonlinear systems with adaptive neural network disturbance observer. Applied Soft Computing, 2024, vol. 167, part B, article no. 112387. DOI: 10.1016/j.asoc.2024.112387.

Chu, Y., Zhou, C., Hou, S., Chen, H., & Fei, J. Self-organizing feature selection fuzzy neural network-based terminal sliding mode control for uncertain nonlinear systems. ISA Transactions, 2024, vol. 154, pp. 171–185. DOI: 10.1016/j.isatra.2024.09.007.

Li, A., Swensen, J. P., & Hosseinzadeh, M. Provably-stable neural network-based control of nonlinear systems. Engineering Applications of Artificial Intelligence, 2024, vol. 138, article no. 109252. DOI: 10.1016/j.engappai.2024.109252.

Chen, J., Mei, J., Hu, J., & Yang, Z. Deep neural networks-prescribed performance optimal control for stochastic nonlinear strict-feedback systems. Neurocomputing, 2024, vol. 610, article no. 128633. DOI: 10.1016/j.neucom.2024.128633.

Vladov, S., Yakovliev, R., Hubachov, O., & Rud, J. Neuro-Fuzzy System for Detection Fuel Consumption of Helicopters Turboshaft Engines. CEUR Workshop Proceedings, 2024, vol. 3628, pp. 55-72. Available at: https://ceur-ws.org/Vol-3628/paper5.pdf. (accessed 11.10.2024)

Sayeh, K.F., Tamalouzt, S., Sahri, Y., Lalouni Belaid, S., & Bekhiti, A. Artificial intelligence-based direct power control for power quality improvement in a WT-DFIG system via neural networks: Prediction and classification techniques. Journal of the Franklin Institute, 2025, vol. 362(1), article no. 107401. DOI: 10.1016/j.jfranklin.2024.107401.

Zhang, Y., Xu, Z., Chen, J., Zhao, L., Wang, X., & Hua, C. Neural networks-based composite learning control for robotic systems with predefined time error constraints, Neurocomputing, 2024, vol. 608, article no. 128414. DOI: 10.1016/j.neucom.2024.128414.

Shipman, W. J., & Coetzee, L. C. Reinforcement Learning and Deep Neural Networks for PI Controller Tuning. IFAC-PapersOnLine, 2019, vol. 52, iss. 14, pp. 111–116. DOI: 10.1016/j.ifacol.2019.09.173.

Ding, Y.-X., Cheng, S., Huang, Y.-T., & Hong, D.-Y. Deep PID Neural Network Controller for Precise Temperature Control in Plastic Injection-moulding Heating System. IFAC-PapersOnLine, 2022, vol. 55, iss. 27, pp. 114–119. DOI: 10.1016/j.ifacol.2022.10.497.

Merabet, A., Kanukollu, S., Al-Durra, A., & El-Saadany, E. F. Adaptive recurrent neural network for uncertainties estimation in feedback control system. Journal of Automation and Intelligence, 2023, vol. 2, iss. 3, pp. 119–129. DOI: 10.1016/j.jai.2023.07.001.

Huang, J.-C., Zeng, G.-Q., Geng, G.-G., Weng, J., Lu, K.-D., & Zhang, Y. Differential evolution-based convolutional neural networks: An automatic architecture design method for intrusion detection in industrial control systems. Computers & Security, 2023, vol. 132, article no. 103310. DOI: 10.1016/j.cose.2023.103310.

Bonassi, F., & Scattolini, R. Recurrent Neural Network-based Internal Model Control design for stable nonlinear systems. European Journal of Control, 2022, vol. 65, article no. 100632. DOI: 10.1016/j.ejcon.2022.100632.

Quilles-Marinho, Y., Oliveira, R.C.L.F., & Peres, P.L.D. Output-feedback control design for Takagi-Sugeno fuzzy systems through Lyapunov functions depending polynomially on the states. Fuzzy Sets and Systems, 2025, vol. 499, article no. 109156. DOI: 10.1016/j.fss.2024.109156.

Fu, H., Xie, W., & Kao, Y. Adaptive sliding mode control for uncertain general fractional chaotic systems based on general Lyapunov stability. Chinese Journal of Physics, 2024, vol. 92, pp. 1361–1372. DOI: 10.1016/j.cjph.2024.05.032.

Quin, F., Weyns, D., & Gheibi, O. Reducing large adaptation spaces in self-adaptive systems using classical machine learning. Journal of Systems and Software, 2022, vol. 190, article no. 111341. DOI: 10.1016/j.jss.2022.111341.

Rivas, J. M., Gutiérrez, J. J., Guasque, A., & Balbastre, P. Gradient descent algorithm for the optimisation of fixed priorities in real-time systems. Journal of Systems Architecture, 2024, vol. 153, article no. 103198. DOI: 10.1016/j.sysarc.2024.103198.

Xue, Y., Wang, Y., & Liang, J. A self-adaptive gradient descent search algorithm for fully-connected neural networks. Neurocomputing, 2022, vol. 478, pp. 70–80. DOI: 10.1016/j.neucom.2022.01.001.

Agulhari, C. M., & Peres, P. L. D. Stability analysis and control synthesis of hybrid time-varying linear systems using a discretisation-based approach. Journal of the Franklin Institute, 2024, vol. 361, iss. 7, article no. 106815. DOI: 10.1016/j.jfranklin.2024.106815.

Fagundes, A. S., Gomes da Silva, J. M., Jr., & Jungers, M. Stability analysis of sampled-data control systems with input saturation: A hybrid system approach. European Journal of Control, 2024, vol. 75, article no. 100890. DOI: 10.1016/j.ejcon.2023.100890.

Albea, C., & Seuret, A. Time-triggered and event-triggered control of switched affine systems via a hybrid dynamical approach. Nonlinear Analysis: Hybrid Systems, 2021, vol. 41, article no. 101039. DOI: 10.1016/j.nahs.2021.101039.

Sachenko, A., Kochan, V., Turchenko, V., Tymchyshyn, V., & Vasylkiv, N. Intelligent nodes for distributed sensor network. Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (IMTC/99), Venice, Italy, 24–26 May 1999, pp. 1479–1484. DOI: 10.1109/IMTC.1999.776072.

Hertneck, M., & Allgöwer, F. Robust dynamic self-triggered control for nonlinear systems using hybrid Lyapunov functions. Nonlinear Analysis: Hybrid Systems, 2024, vol. 53, article no. 101485. DOI: 10.1016/j.nahs.2024.101485.

Ocheretnyuk, N., Voytyuk, I., Dyvak, M., & Martsenyuk, Y. Features of structure identification the macromodels for nonstationary fields of air pollutions from vehicles. Proceedings of International Conference on Modern Problem of Radio Engineering, Telecommunications and Computer Science, Lviv, Ukraine, 21–24 February 2012, p. 444.

Dyvak, M., Pukas, A., Oliynyk, I., & Melnyk, A. Selection the “saturated” block from interval system of linear algebraic equations for recurrent laryngeal nerve identification. Proceedings of 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 2018, pp. 444–448. DOI: 10.1109/DSMP.2018.8478528.

Zhang, Z., Li, C., Zhang, W., Zhou, J., & Liu, G. An FPGA-based memristor emulator for artificial neural network. Microelectronics Journal, 2023, vol. 131, article no. 105639. DOI: 10.1016/j.mejo.2022.105639.

Han, C., Qin, K., Lin, B., Shi, M., Li, Z., & Liu, Q. Neural network-based distributed consensus tracking control for uncertain Euler–Lagrange systems over directed topologies. Neurocomputing, 2024, vol. 608, article no. 128383. DOI: 10.1016/j.neucom.2024.128383.

Vladov, S., Scislo, L., Sokurenko, V., Muzychuk, O., Vysotska, V., Osadchy, S., & Sachenko, A. Neural Network Signal Integration from Thermogas-Dynamic Parameter Sensors for Helicopters Turboshaft Engines at Flight Operation Conditions. Sensors, 2024, vol. 24, article no. 4246. DOI: 10.3390/s24134246.

Mayadunne, S., Rajagopalan, H. K., & Sharer, E. A multi-step mixed integer programming heuristic for warehouse layout optimisation. Supply Chain Analytics, 2024, vol. 8, article no. 100088. DOI: 10.1016/j.sca.2024.100088.

Gurrola Arrieta, M. de J., Botez, R. M., & Lasne, A. An Engine Deterioration Model for Predicting Fuel Consumption Impact in a Regional Aircraft. Aerospace, 2024, vol. 11, iss. 6, article no. 426. DOI: 10.3390/aerospace11060426.

Pasieka, M., Grzesik, N., & Kuźma, K. Simulation modeling of fuzzy logic controller for aircraft engines. International Journal of Computing, 2017, vol. 16, iss. 1, pp. 27–33. DOI: 10.47839/ijc.16.1.868.

Vladov, S., Shmelov, Y., & Yakovliev, R. Method for Forecasting of Helicopters Aircraft Engines Technical State in Flight Modes Using Neural Networks. CEUR Workshop Proceedings, 2022, vol. 3171, pp. 974–985. Available at: https://ceur-ws.org/Vol-3171/paper70.pdf (accessed 16.10.2024)

Zheng, X., Zeng, H., Wang, B., Wen, M., Yang, H. & Sun, Z. Numerical simulation method of surge experiments on gas turbine engines. Chinese Journal of Aeronautics, 2023, vol. 36, iss. 3, pp. 107–120. DOI: 10.1016/j.cja.2022.08.007.

Sheng, H., Chen, Q., Li, J., Jiang, W., Wang, Z., Liu, Z., Zhang, T., & Liu, Y. Research on dynamic modeling and performance analysis of helicopter turboshaft engine's start-up process. Aerospace Science and Technology, 2020, vol. 106, article no. 106097. DOI: 10.1016/j.ast.2020.106097.

Avrunin, O., Vladov, S., Petchenko, M., Semenets, V., Tatarinov, V., Telnova, H., Filatov, V., Shmelov, Y., & Shushlyapina, N. Intelligent automation systems, Novabook: Kremenchuk, Ukraine, 2021, pp. 144–160. DOI: 10.30837/978-617-639-347-4.

Catana, R. M., & Dediu, G. Analytical Calculation Model of the TV3-117 Turboshaft Working Regimes Based on Experimental Data. Applied Sciences, 2023, vol. 13, iss. 19, article no. 10720. DOI: 10.3390/app131910720.

Vladov, S., Shmelov, Y., & Petchenko, M. A Neuro-Fuzzy Expert System for the Control and Diagnostics of Helicopters Aircraft Engines Technical State. CEUR Workshop Proceedings, 2021, vol. 3013, pp. 40–52. Available at: https://ceur-ws.org/Vol-3013/20210040.pdf (accessed 20.10.2024)

Pasieka, M., Grzesik, N., & Kuźma, K. Simulation modeling of fuzzy logic controller for aircraft engines. International Journal of Computing, 2017, vol. 16, iss. 1, pp. 27–33. DOI: 10.47839/ijc.16.1.868.

Rusyn, B., Lutsyk, O., Kosarevych, R., Kapshii, O., Karpin, O., Maksymyuk, T., & Gazda, J. Rethinking Deep CNN Training: A Novel Approach for Quality-Aware Dataset Optimization. IEEE Access, 2024, vol. 12, pp. 137427–137438. DOI: 10.1109/access.2024.3414651.

Kim, H.-Y. Statistical Notes for Clinical Researchers: Chi-Squared Test and Fisher's Exact Test. Restorative Dentistry & Endodontics, 2017, vol. 42, article no. 152. DOI: 10.5395/rde.2017.42.2.152.

Benaceur, A., & Verfürth, B. Statistical Variational Data Assimilation. Computer Methods in Applied Mechanics and Engineering, 2024, vol. 432, article no. 117402. DOI: 10.1016/j.cma.2024.117402.

Paliy, I., Sachenko, A., Koval, V., & Kurylyak, Y. Approach to Face Recognition Using Neural Networks. Proceedings of the 2005 IEEE Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Sofia, Bulgaria, 2005, pp. 112–115. DOI: 10.1109/IDAACS.2005.282951.

Cosenza, P., Fauchille, A.-L., Prêt, D., Hedan, S., & Giraud, A. Statistical Representative Elementary Area of Shale Inferred by Micromechanics. International Journal of Engineering Science, 2019, vol. 142, pp. 53–73. DOI: 10.1016/j.ijengsci.2019.05.012.

Stefanovic, C. M., Armada, A. G., & Costa-Perez, X. Second Order Statistics of -Fisher-Snedecor Distribution and Their Application to Burst Error Rate Analysis of Multi-Hop Communications. IEEE Open Journal of the Communications Society, 2022, vol. 3, pp. 2407–2424. DOI; 10.1109/ojcoms.2022.3224835.

Rusyn, B., Lutsyk, O., Kosarevych, R., Maksymyuk, T., & Gazda, J. Features Extraction from Multi-Spectral Remote Sensing Images Based on Multi-Threshold Binarization. Scientific Reports 2023, vol. 13, article no. 19655. DOI: 10.1038/s41598-023-46785-7.

Bezobrazov, S., Golovko, V., Sachenko, A., Komar, M., Dolny, R., Kasyanik, V., Bykovyy, P., Mikhno, E., & Osolinskyi, O. Deep multilayer neural network for predicting the winner of football matches. International Journal of Computing, 2020, vol. 19, iss. 1, pp. 70–77. DOI: 10.31891/1727-6209/2020/19/1-70-77.

Berko, A., Alieksieiev, V., & Holdovanskyi, V. Determination-based correlation coefficient. CEUR Workshop Proceedings, 2024, vol. 3711, pp. 198–224. Available at: https://ceur-ws.org/Vol-3711/paper12.pdf (accessed 28.10.2024)

Vysotska, V., Lytvyn, V., Nazarkevych, M., Vladov, S., Yakovliev, R., & Yurko A. Training Neural Network Method Modification for Forward Error Propagation Based on Adaptive Components. CEUR Workshop Proceedings, 2024, vol. 3711, pp. 138–168. Available at: https://ceur-ws.org/Vol-3711/paper9.pdf (accessed 28.10.2024)

Vladov, S., Bulakh, M., Vysotska, V., & Yakovliev, R. Onboard Neuro-Fuzzy Adaptive Helicopter Turboshaft Engine Automatic Control System. Energies, 2024, vol. 17, iss. 16, article no. 4195. DOI: 10.3390/en17164195.

Cherrat, E. M., Alaoui, R., & Bouzahir, H. Score fusion of finger vein and face for human recognition based on convolutional neural network model. International Journal of Computing, 2020, vol. 19, iss. 1, pp. 11–19. DOI: 10.47839/ijc.19.1.1688.

Vladov, S., Yakovliev, R., Vysotska, V., Nazarkevych, M., & Lytvyn, V. The Method of Restoring Lost Information from Sensors Based on Auto-Associative Neural Networks. Applied System Innovation, 2024, vol. 7, iss. 3, article no. 53. DOI: 10.3390/asi7030053.

Morozov, V. V., Kalnichenko, O. V., & Mezentseva, O. O. The method of interaction modeling on basis of deep learning the neural networks in complex IT-projects. International Journal of Computing, 2020, vol. 19, iss. 1, pp. 88–96. DOI: 10.47839/ijc.19.1.1697.

Komar, M., Sachenko, A., Golovko, V., & Dorosh, V. Compression of network traffic parameters for detecting cyber attacks based on deep learning. Proceedings of the 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT), Kyiv, Ukraine, 2018, pp. 43–47. DOI: 10.1109/DESSERT.2018.8409096.

Zhang, C., & Gümmer, V. The potential of helicopter turboshaft engines incorporating highly effective recuperators under various flight conditions. Aerospace Science and Technology, 2019, vol. 88, pp. 84–94. DOI: 10.1016/j.ast.2019.03.008.

Li, Y., Zhang, J., & Xuan, Y. The influence of helicopter rotor-fuselage flow interaction on temperature fields in forward flight. Applied Thermal Engineering, 2017, vol. 116, pp. 488–499. DOI: 10.1016/j.applthermaleng.2016.12.114.

Sagin, S., Madey, V., Sagin, A., Stoliaryk, T., Fomin, O., & Kučera, P. Ensuring Reliable and Safe Operation of Trunk Diesel Engines of Marine Transport Vessels. Journal of Marine Science and Engineering, 2022, vol. 10, iss. 10, article no. 1373. DOI: 10.3390/jmse10101373.

Sagin, S. V., Sagin, S. S., Fomin, O., Gaichenia, O., Zablotskyi, Y., Píštěk, V., & Kučera, P. Use of Biofuels in Marine Diesel Engines for Sustainable and Safe Maritime Transport. Renewable energy, 2024, vol. 224, article no.120221. DOI: 10.1016/j.renene.2024.120221.

Baranovskyi, D., Bulakh, M., Myamlin, S., & Kebal, I. New Design of the Hatch Cover to Increase the Carrying Capacity of the Gondola Car. Advances in Science and Technology Research Journal, 2022, vol. 16, 186–191. DOI: 10.12913/22998624/156205.

Baranovskyi, D., Myamlin, S., Bulakh, M., Podosonov, D., & Muradian, L. Determination of the Filler Concentration of the Composite Tape. Applied Sciences, 2022, vol. 12, iss. 21, article no. 11044. DOI: 10.3390/app122111044.

Xu, Q., & Zhang, Y. Event-triggered nonlinear information fusion preview control of a two-degree-of-freedom helicopter system. Aerospace Science and Technology, 2023, vol. 140, article no. 108474. DOI: 10.1016/j.ast.2023.108474.

Gopmandal, F., & Ghosh, A. LQR-based MIMO PID control of a 2-DOF helicopter system with uncertain cross-coupled gain. IFAC-PapersOnLine, 2022, vol. 55, iss. 22, pp. 183–188. DOI: 10.1016/j.ifacol.2023.03.031.

Kazi, S. R., Thombre, M., & Biegler, L. Globally Convergent Method for Optimal Control of Hybrid Dynamical Systems. IFAC-PapersOnLine, 2024, vol. 58, iss. 14, pp. 868–873. DOI: 10.1016/j.ifacol.2024.08.446.

Zhao, H., & Guo, W. Coordinated control method of multiple hybrid energy storage systems based on distributed event-triggered mechanism. International Journal of Electrical Power & Energy Systems, 2021, vol. 127, article no. 106637. DOI: 10.1016/j.ijepes.2020.106637.




DOI: https://doi.org/10.32620/reks.2024.4.15

Refbacks

  • There are currently no refbacks.