Deep learning models for detection of explosive ordnance using autonomous robotic systems: trade-off between accuracy and real-time processing speed

Vadym Mishchuk, Herman Fesenko, Vyacheslav Kharchenko

Abstract


The study focuses on deep learning models for real-time explosive ordnance detection (EO). This study aimed to evaluate and compare the performance of YOLOv8 and RT-DETR object detection models in terms of accuracy and speed for EO detection via autonomous robotic systems. The objectives are as follows: 1) conduct a comparative analysis of YOLOv8 and RT-DETR image processing models for explosive ordnance (EO) detection, focusing on accuracy and real-time processing speed;2) to explore the impact of different input image resolutions on model performance for identifying the optimal resolution for EO detection tasks;3) to analyze how object size (small, medium, large) affects detection efficiency for enhancing EO recognition accuracy; 4) to develop recommendations for EO detection model configurations; 5) to propose methods for enhancing EO detection model performance in complex environments. The following results were obtained. 1) The results of a comparative analysis of YOLOv8 and RT-DETR models for EO detection in the context of speed-accuracy trade-offs. 2) Recommendations for EO detection model configurations aimed at improving the efficiency of autonomous demining robotic systems, including optimal camera parameter selection. 3) Methods for improving EO detection model performance to increase its accuracy in complex environments, including synthetic data generation and confidence threshold tuning. Conclusions. The main contribution of this study is the results of a detailed evaluation of the YOLOv8 and RT-DETR models for real-time EO detection, helping to find trade-offs between the speed and accuracy of each model and emphasizing the need for special datasets and algorithm optimization to improve the reliability of EO detection in autonomous systems.

Keywords


explosive ordnance; object detection; precision; performance; YOLO; transformers

Full Text:

PDF

References


Fedorenko, G., Fesenko, H., Kharchenko, V., Kliushnikov, I. & Tolkunov, I. Robotic-biological systems for detection and identification of explosive ordnance: concept, general structure, and models. Radioelectronic and Computer Systems, 2023, no. 2, pp. 143 –159. DOI:10.32620/reks.2023.2.12.

Baur, J., Steinberg, G., Nikulin, A., Chiu, K., & de Smet, T. S. Applying Deep Learning to Automate UAV-Based Detection of Scatterable Landmines. Remote Sensing, 2020, vol. 12, no. 5, article nо. 859. DOI:10.3390/rs12050859.

Vivoli, E., Bertini, M., & Capineri, L. Deep Learning-Based Real-Time Detection of Surface Landmines Using Optical Imaging. Remote Sensing, 2024. vol. 16, no. 4, article no. 677. DOI:10.3390/rs16040677.

Zou, Z., Chen, K., Shi, Z., Guo, Y, & Ye, J. Object Detection in 20 Years: A Survey. Proceedings of the IEEE, 2023, vol. 111, no. 3, pp. 257–276. DOI: 10.1109/JPROC.2023.3238524.

Lema, D. G., Usamentiaga, R., & García, D. F. Quantitative comparison and performance evaluation of deep learning-based object detection models on edge computing devices. Integration, 2024, vol. 95, article no 102127. DOI: 10.1016/j.vlsi.2023.102127.

Tian, J., Jin, Q., Wang, Y., Yang, J., Zhang, S., & Sun, D. Performance analysis of deep learning-based object detection algorithms on COCO benchmark: a comparative study. Journal of Engineering and Applied Science, 2024, vol. 71, article no. 76. DOI: 10.1186/s44147-024-00411-z.

Srivastava, S., Divekar, A. V., Anilkumar, C., Naik, I., Kulkarni, V., & Pattabiraman, V. Comparative analysis of deep learning image detection algorithms. Journal of Big Data, 2021, vol. 8, article no. 66. DOI: 10.1186/s40537-021-00434-w.

Arani, E., Gowda, S., Mukherjee, R., Magdy, O., Kathiresan, S., & Zonooz, B. A Comprehensive Study of Real-Time Object Detection Networks Across Multiple Domains: A Survey. Available at: https://arxiv.org/abs/2208.10895 (accessed 20.11.2024).

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S. & Murphy, K. Speed/accuracy trade-offs for modern convolutional object detectors. Available at: https://arxiv.org/abs/1611.10012 (accessed 20.11.2024).

Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J. & Ding, G., 2024. YOLOv10: Real-Time End-to-End Object Detection. Available at: https://arxiv.org/abs/2405.14458 (accessed 20.11.2024).

Padilla, R., Passos, W. L., Dias, T. L. B., Netto, S. L., & da Silva, E. A. B. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics, 2021, vol. 10, no. 3 article no. 279. DOI: 10.3390/electronics10030279.

Wenkel, S., Alhazmi, K., Liiv, T., Alrshoud, S. & Simon, M. Confidence Score: The Forgotten Dimension of Object Detection Performance Evaluation. Sensors, 2021, vol. 21, no 13, article no 4350. DOI:10.3390/s21134350.

Barnawi, A., Kumar, K., Kumar, N., Alzahrani, B., & Almansour, A. A Deep Learning Approach for Landmines Detection Based on Airborne Magnetometry Imaging and Edge Computing. CMES - Computer Modeling in Engineering and Sciences, 2024, vol. 139, no. 2, pp. 2117–2137. DOI:10.32604/cmes.2023.044184.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A.. You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conf. Comput. Vision and Pattern Recognition (CVPR), 2016, pp. 779–788. DOI: 10.1109/CVPR.2016.91.

Zhao, Y., Lv, W., Xu, S., Wei, J., Wang, G., Dang, Q., Liu, Y. & Chen, J. DETRs Beat YOLOs on Real-time Object Detection. Available at: https://arxiv.org/abs/2304.08069 (accessed 20.11.2024).

Jocher, G., Chaurasia, A., & Qiu, J. Ultralytics YOLOv8. Available at: https://github.com/ultralytics/ultralytics (accessed 20.11.2024).

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L. & Dollar, P. Microsoft COCO: Common Objects in Context. Available at: https://arxiv.org/abs/1405.0312 (accessed 20.11.2024).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. & Chintala, S. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Available at: https://arxiv.org/abs/1912.01703 (accessed 20.11.2024).

Cartucho, J., Ventura, R. & Veloso, M., 2018. Robust Object Recognition Through Symbiotic Deep Learning In Mobile Robots. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 2336–2341. DOI:10.1109/iros.2018.8594067.




DOI: https://doi.org/10.32620/reks.2024.4.09

Refbacks

  • There are currently no refbacks.