Deep learning models for detection of explosive ordnance using autonomous robotic systems: trade-off between accuracy and real-time processing speed
Abstract
Keywords
Full Text:
PDFReferences
Fedorenko, G., Fesenko, H., Kharchenko, V., Kliushnikov, I. & Tolkunov, I. Robotic-biological systems for detection and identification of explosive ordnance: concept, general structure, and models. Radioelectronic and Computer Systems, 2023, no. 2, pp. 143 –159. DOI:10.32620/reks.2023.2.12.
Baur, J., Steinberg, G., Nikulin, A., Chiu, K., & de Smet, T. S. Applying Deep Learning to Automate UAV-Based Detection of Scatterable Landmines. Remote Sensing, 2020, vol. 12, no. 5, article nо. 859. DOI:10.3390/rs12050859.
Vivoli, E., Bertini, M., & Capineri, L. Deep Learning-Based Real-Time Detection of Surface Landmines Using Optical Imaging. Remote Sensing, 2024. vol. 16, no. 4, article no. 677. DOI:10.3390/rs16040677.
Zou, Z., Chen, K., Shi, Z., Guo, Y, & Ye, J. Object Detection in 20 Years: A Survey. Proceedings of the IEEE, 2023, vol. 111, no. 3, pp. 257–276. DOI: 10.1109/JPROC.2023.3238524.
Lema, D. G., Usamentiaga, R., & García, D. F. Quantitative comparison and performance evaluation of deep learning-based object detection models on edge computing devices. Integration, 2024, vol. 95, article no 102127. DOI: 10.1016/j.vlsi.2023.102127.
Tian, J., Jin, Q., Wang, Y., Yang, J., Zhang, S., & Sun, D. Performance analysis of deep learning-based object detection algorithms on COCO benchmark: a comparative study. Journal of Engineering and Applied Science, 2024, vol. 71, article no. 76. DOI: 10.1186/s44147-024-00411-z.
Srivastava, S., Divekar, A. V., Anilkumar, C., Naik, I., Kulkarni, V., & Pattabiraman, V. Comparative analysis of deep learning image detection algorithms. Journal of Big Data, 2021, vol. 8, article no. 66. DOI: 10.1186/s40537-021-00434-w.
Arani, E., Gowda, S., Mukherjee, R., Magdy, O., Kathiresan, S., & Zonooz, B. A Comprehensive Study of Real-Time Object Detection Networks Across Multiple Domains: A Survey. Available at: https://arxiv.org/abs/2208.10895 (accessed 20.11.2024).
Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S. & Murphy, K. Speed/accuracy trade-offs for modern convolutional object detectors. Available at: https://arxiv.org/abs/1611.10012 (accessed 20.11.2024).
Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J. & Ding, G., 2024. YOLOv10: Real-Time End-to-End Object Detection. Available at: https://arxiv.org/abs/2405.14458 (accessed 20.11.2024).
Padilla, R., Passos, W. L., Dias, T. L. B., Netto, S. L., & da Silva, E. A. B. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics, 2021, vol. 10, no. 3 article no. 279. DOI: 10.3390/electronics10030279.
Wenkel, S., Alhazmi, K., Liiv, T., Alrshoud, S. & Simon, M. Confidence Score: The Forgotten Dimension of Object Detection Performance Evaluation. Sensors, 2021, vol. 21, no 13, article no 4350. DOI:10.3390/s21134350.
Barnawi, A., Kumar, K., Kumar, N., Alzahrani, B., & Almansour, A. A Deep Learning Approach for Landmines Detection Based on Airborne Magnetometry Imaging and Edge Computing. CMES - Computer Modeling in Engineering and Sciences, 2024, vol. 139, no. 2, pp. 2117–2137. DOI:10.32604/cmes.2023.044184.
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A.. You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conf. Comput. Vision and Pattern Recognition (CVPR), 2016, pp. 779–788. DOI: 10.1109/CVPR.2016.91.
Zhao, Y., Lv, W., Xu, S., Wei, J., Wang, G., Dang, Q., Liu, Y. & Chen, J. DETRs Beat YOLOs on Real-time Object Detection. Available at: https://arxiv.org/abs/2304.08069 (accessed 20.11.2024).
Jocher, G., Chaurasia, A., & Qiu, J. Ultralytics YOLOv8. Available at: https://github.com/ultralytics/ultralytics (accessed 20.11.2024).
Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L. & Dollar, P. Microsoft COCO: Common Objects in Context. Available at: https://arxiv.org/abs/1405.0312 (accessed 20.11.2024).
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. & Chintala, S. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Available at: https://arxiv.org/abs/1912.01703 (accessed 20.11.2024).
Cartucho, J., Ventura, R. & Veloso, M., 2018. Robust Object Recognition Through Symbiotic Deep Learning In Mobile Robots. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 2336–2341. DOI:10.1109/iros.2018.8594067.
DOI: https://doi.org/10.32620/reks.2024.4.09
Refbacks
- There are currently no refbacks.