Dimensionality cutback and deep learning algorithms efficacy as to the breast cancer diagnostic dataset
Abstract
Keywords
Full Text:
PDFReferences
Orlova, N. M., Tonkovyd, O. B., Palamar, I. V., Klimas, L. A., Shkondin, S. V., & Tkach, V. S. Medyko-statystychnyi analiz zakhvoriuvanosti, smertnosti ta svoiechasnosti vyiavlennia raku molochnoi zalozy v Ukraini [Medical and statistical analysis of incidence, mortality, and timeliness of breast cancer diagnosis in Ukraine]. Visnyk Vinnytskoho natsionalnoho medychnoho universytetu – Rep. of Vinnytsia Nation. Med. Univ., 2024, vol. 28(1), pp. 113-120. DOI: 10.31393/reports-vnmedical-2024-28(1)-20. (In Ukrainian)
Zielonke, N, Kregting, L. M., Heijnsdijk, E. A. M., Veerus, P., Heinävaara, S., McKee, M., Kok, I. M. C. M., Koning, H. J., & Ravesteyn, N. T. The potential of breast cancer screening in Europe. Int J Cancer, 2021, vol. 148, iss. 2, pp. 406-418. DOI: 10.1002/ijc.33204.
Nusrat Mohi ud din, Rayees Ahmad Dar, Muzafar Rasool, & Assif Assad. Breast cancer detection using deep learning: Datasets, methods, and challenges ahead, Computers in Biology and Medicine, 2022, vol. 149, article no. 106073, DOI: 10.1016/j.compbiomed.2022.106073.
Tolstoluzka, O., & Telezhenko, D., Development and Training of LSTM Models for Controlling Virtual Distributed Systems Using TensorFlow and Keras. Radioelectronic and Computer Systems, 2024, no. 1(109), pp. 27-37. DOI: 10.32620/reks.2024.3.02.
Zwitter, M., & Soklic, M. Breast Cancer. UCI Machine Learning Repository. Institute of Oncology, University Medical Center, Ljubljana, Yugoslavia, 1998. DOI: 10.24432/C51P4M.
Chuiko, G. P., & Yaremchuk, O. M. Handling the Breast Cancer Recurrence Data for a More Reliable Forecast. Kompiuterni systemy ta informatsiini tekhnolohii – Computer Systems and Information Technologies, 2023, vol. (4), pp. 10-15. DOI: 10.31891/csit-2023-4-2.
Wolberg, W., Mangasarian, O., Street, N., & Street, W. Breast Cancer Wisconsin (Diagnostic). UCI Machine Learning Repository, 1995. DOI: 10.24432/C5DW2B.
BreakHis. Breast Cancer Histopathological Database (BreakHis). Available at: https://www.kaggle.com/datasets/ambarish/breakhis (accessed 12.06.2024).
Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. A. Dataset for Breast Cancer Histopathological Image Classification. IEEE Transactions on Biomedical Engineering, 2016, vol. 63, iss. 7, pp. 1455-1462. DOI: 10.1109/TBME.2015.2496264.
Nasser, M., & Yusof, U. K. Deep Learning Based Methods for Breast Cancer Diagnosis: A Systematic Review and Future Direction. Diagnostics, 2023, vol. 13, iss. 1, pp. 1-26. DOI: 10.3390/diagnostics13010161.
Nemade, V., Pathak, S., & Dubey, A. K. A Systematic Literature Review of Breast Cancer Diagnosis Using Machine Intelligence Techniques. Archives of Computational Methods in Engineering, 2022, vol. 29, pp. 4401-4430. DOI: 10.1007/s11831-022-09738-3.
Shashmi, K. Curse of Dimensionality – A "Curse" to Machine Learning. Towards Data Science. Available at: https://towardsdatascience.com/curse-of-dimensionality-a-curse-to-machine-learning-c122ee33bfeb (accessed 12.06.2024).
Chuiko, G. P., Honcharov, D. S., Dvornik, O. V., Krainyk, Ya. M., Darnapuk, Ye. O., & Yaremchuk, O. M. Attribute Selection, Outliers Impact Study, and Visualization within Breast Cancer Detection. 2023 IEEE 13th International Conference on Electronics and Information Technologies (ELIT), Lviv, Ukraine, 2023, pp. 1-5. DOI: 10.1109/ELIT61488.2023.10310922.
Rosenblatt, F. The Perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 1958, vol. 65, iss. 6, pp. 386-408. DOI: 10.1037/h0042519.
Freund, Y, & Schapire, R. E. Large Margin Classification Using the Perceptron Algorithm. Mach Learn, 1999, vol. 37, iss. 3, pp. 277–296. DOI: 10.1023/A:1007662407062.
Lang, S., Bravo-Marquez, F., Beckham, C., Hall, M., & Frank, E. WekaDeeplearning4j: A Deep Learning package for Weka based on Deeplearning4j. Knowledge-Based Syst., 2019, vol. 178, pp. 48-50. DOI: 10.1016/j.knosys.2019.04.013.
Nova, D., & Estevez, P. A review of learning vector quantization classifiers. Neural Computing and Applications, 2014, vol. 25, pp. 511-524. DOI: 10.1007/s00521-013-1535-3.
Wehrens, R., & Kruisselbrink, J. W. Flexible Self-Organizing Maps in kohonen 3.0. Journal of Statistical Software, 2018, vol. 87, pp. 1-18. DOI: 10.18637/JSS.V087.I07.
Running an experiment using clusterers. Available at: https://waikato.github.io/weka-wiki/experimenter/running_an_experiment_using_clusterers/ (accessed 12.06.2024).
Chicco, D., & Jurman, G. A statistical comparison between Matthews correlation coefficient (MCC), prevalence threshold, and Fowlkes–Mallows index. J Biomed Inform., 2023, vol. 144, article no. 104426. DOI: 10.1016/j.jbi.2023.104426.
Xu, D., & Tian, Y. A. Comprehensive Survey of Clustering Algorithms. Ann. Data. Sci. 2015, vol. 2, pp. 165-193. DOI: 10.1007/s40745-015-0040-1.
Calinski-Harabasz Index – Cluster Validity indices. Available at: https://www.geeksforgeeks.org/calinski-harabasz-index-cluster-validity-indices-set-3/ (accessed 12.06.2024).
Fowlkes, E. B., & Mallows, C. L. A Method for Comparing Two Hierarchical Clusterings. Journal of the American Statistical Association, 1983, vol. 78, iss. 383, pp. 553-569. DOI: 10.2307/2288117.
Ajayan, S. S. J. , Reddy, N. V. U., Devasenapati, S. B., & Rebelli, S. Analysis of COVID-19 CT Chest Image Classification using Dl4jMlp Classifier and Multilayer Perceptron in WEKA Environment. Curr Med Imaging Former Curr Med Imaging Rev., 2023, vol. 20, pp. 1-7. DOI: 10.2174/1573405620666230417090246.
DOI: https://doi.org/10.32620/reks.2024.4.08
Refbacks
- There are currently no refbacks.