Classification of disinformation in hybrid warfare: an application of XLNet during the Russia’s war against Ukraine
Abstract
Keywords
Full Text:
PDFReferences
Bontridder, N., & Poullet, Y. The Role of Artificial Intelligence in Disinformation. Data & Policy, 2021, vol. 3, article no. E32, DOI: 10.1017/dap.2021.20.
Bahruz, E.T. Manipulation as a Form of information-psychological War. Revista Universidad y Sociedad, 2023, vol. 15, no. 5, pp. 143–150. Available at: http://scielo.sld.cu/scielo.php?pid=S2218-36202023000500143&script=sci_abstract (Accessed 1 Sep. 2024).
Manheim, K., & Kaplan, L. Artificial Intelligence: Risks to Privacy and Democracy. Yale Journal of Law & Technology, 2019, vol. 106, 83 p. Available at: https://yjolt.org/artificial-intelligence-risks-privacy-and-democracy (Accessed 1 Sep. 2024).
Ewe, K. Elections Around the World in 2024. TIME, 2023. Available at: https://time.com/6550920/world-elections-2024/ (Accessed 1 Sep. 2024).
Interference 2024. Interference Tracker 2024, 2024. Available at: https://interference2024.org/ (Accessed 1 Sep. 2024).
Müller, M. M. Looking Doppelganger: an Analysis of Evolving State-Sponsored Disinformation Tactics. Utwente.nl, 2024. Available at: https://purl.utwente.nl/essays/102708 (Accessed 1 Sep. 2024).
Serrano-Puche, J. Digital Disinformation and emotions: Exploring the Social Risks of Affective Polarization. International Review of Sociology, 2021, vol. 31, no. 2, pp. 231–245. DOI: 10.1080/03906701.2021.1947953.
Tenove, C. Protecting Democracy from Disinformation: Normative Threats and Policy Responses. The International Journal of Press/Politics, 2020, vol. 25, no. 3, pp. 517–537. DOI: 10.1177/1940161220918740.
Raad, A. Protecting Freedom of Thought: Mitigating Technological Enablers of Disinformation. Centre for International Governance Innovation, 2024. Available at: https://www.cigionline.org/publications/protecting-freedom-of-thought-mitigating-technological-enablers-of-disinformation/ (Accessed 1 Sep, 2024).
Mohammadi, A., Meniailov, I., Bazilevych, K., Yakovlev, S., & Chumachenko, D. Comparative study of linear regression and SIR models of COVID-19 propagation in Ukraine before vaccination. Radioelectronic and Computer Science, 2021, vol. 3, pp. 5-18. DOI: 10.32620/reks.2021.3.01.
Choraś, M., Demestichas, K., Gielczyk, A., Herrero, A., Ksieniewicz, P., Remoundou, K., Urda, D., & Wozniak, M. Advanced Machine Learning techniques for fake news (online disinformation) detection: A systematic mapping study. Applied Soft Computing, 2021, vol. 101, article no. 107050. DOI: 10.1016/j.asoc.2020.107050.
Padalko, H., Chomko, V., Yakovlev, Y., & Chumachenko, D. Ensemble Machine Learning Approaches for Fake News Classification. Radioelectronic and Computer Systems, 2023, no. 4, pp. 5–19. DOI: 10.32620/reks.2023.4.01.
Tianda, I. M., Ubadah, M. N., Mardianto, M. F. F., Munawwarah, A., & Ana, E. Clustering Fake News with K-Means and Agglomerative Clustering Based on Word2Vec. International Journal of Mathematics and Computer Research, 2024, vol. 12, no. 02, pp. 3999–4007. DOI: 10.47191/ijmcr/v12i2.01.
Chumachenko, D., Piletskiy, P., Sukhorukova, M., & Chumachenko, T. Predictive Model of Lyme Disease Epidemic Process Using Machine Learning Approach. Applied Sciences, 2022, vol. 12, no. 9, article no. 4282. DOI: 10.3390/app12094282.
Akhtar, P., Ghouri, A.M., Khan, H.U.R., Haq, M.A., Awan, U., Zahoor, N., Khan, Z., & Ashraf, A. Detecting fake news and disinformation using artificial intelligence and machine learning to avoid supply chain disruptions. Annals of Operations Research, 2022, vol. 327, pp. 633-657. DOI: 10.1007/s10479-022-05015-5.
Chumachenko, D., Butkevych, M., Lode, D., Frohme, M., Schmailzl, K. J. G., & Nechyporenko, A. Machine Learning Methods in Predicting Patients with Suspected Myocardial Infarction Based on Short-Time HRV Data. Sensors, 2022, vol. 22, no. 18, article no. 7033. DOI: 10.3390/s22187033.
Park, C. Y., Mendelsohn, J., Field, A., & Tsvetkov, Y. Challenges and Opportunities in Information Manipulation Detection: an Examination of Wartime Russian Media, Findings of the Association for Computational Linguistics: EMNLP 2022, 2022, pp. 5209-5235. DOI: 10.18653/v1/2022.findings-emnlp.382.
Pilkevych, I. A., Fedorchuk, D. L., Romanchuk, M. P., & Naumchak, O. M. Approach to the Fake News Detection Using the Graph Neural Networks. Journal of Edge Computing, 2023, vol. 2, no. 1, pp. 24–36. DOI: 10.55056/jec.592.
Durani, K., Eckhardt, A., Durani, W., Kollmer, T., & Augustin, N. Visual audience gatekeeping on social media platforms: A critical investigation on visual information diffusion before and during the Russo–Ukrainian War. Information Systems Journal, 2023, vol. 34, iss. 2, pp. 415-468. DOI: 10.1111/isj.12483.
Maathuis, C., & Kerkhof, I. First Six Months of War from Ukrainian topic and sentiment analysis. European Conference on Social Media, 2023, vol. 10, no. 1, pp. 163–173. DOI: 10.34190/ecsm.10.1.1147.
Marigliano, R., Hui, L., & Carley, K. M. Analyzing Digital Propaganda and Conflict rhetoric: a Study on Russia’s bot-driven Campaigns and counter-narratives during the Ukraine Crisis. Social Network Analysis and Mining, 2024, vol. 14, no. 1, article no. 170. DOI: 10.1007/s13278-024-01322-w.
Aguerri, J. C., Santisteban, M., & Miró-Llinares, F. The Fight against Disinformation and Its consequences: Measuring the Impact of ‘Russia state-affiliated Media’ on Twitter. Crime Science, 2024, vol. 13, no. 1, 17. DOI: 10.1186/s40163-024-00215-9.
Lipianina-Honcharenko, K., Bodyanskiy, Y., Kustra, N., Ivasechkо, A. OLTW-TEC: Online Learning with Sliding Windows for Text Classifier Ensembles. Frontiers in Artificial Intelligence, 2024, vol. 7, article no. 1401126. DOI: 10.3389/frai.2024.1401126.
Makhortykh, M., Sydorova, M., Baghumyan, A., Vziatysheva, V., & Kuznetsova, E. Stochastic lies: How LLM-powered Chatbots Deal with Russian Disinformation about the War in Ukraine. Harvard Kennedy School Misinformation Review, 2024, vol. 5, no. 4. DOI: 10.37016/mr-2020-154.
Shultz, B. An Entity-Aware Approach to Logical Fallacy Detection in Kremlin Social Media Content. ASONAM ’23: Proceedings of the International Conference on Advances in Social Networks Analysis and Mining, 2023, pp. 780-783. DOI: 10.1145/3625007.3627988.
Maathuis, C., De Ridder, C., & Stuurman, S. Analyzing the Role of Ukrainian and Russian Diaspora in Disinformation Campaigns. European Conference on Social Media, 2023, vol. 10, no. 1, pp. 153–162. DOI: 10.34190/ecsm.10.1.1118.
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. XLNet: Generalized Autoregressive Pretraining for Language Understanding. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), 2019, article no. 161263.
Hussain, I. Z., Kaur, J., Lotto, M., Butt, Z. A., & Morita, P. P. Tweeting for Health Using Real-Time Mining and AI-Based Analytics: Design & Development of as Misinformation Data Ecosystem for Twitter (Preprint). Journal of Medical Internet Research, 2022, vol. 25, article no. e44356. DOI: 10.2196/44356.
DOI: https://doi.org/10.32620/reks.2024.4.04
Refbacks
- There are currently no refbacks.