Time series analysis of leptospirosis incidence for forecasting in the Baltic countries using the ARIMA model

Mykola Butkevych, Dmytro Chumachenko

Abstract


Leptospirosis, a zoonotic disease with significant public health implications, presents considerable forecasting challenges due to its seasonal patterns and environmental sensitivity, especially in under-researched regions like the Baltic countries. This study aimed to develop an ARIMA-based forecasting model for predicting leptospirosis incidence across Estonia, Latvia, and Lithuania, where current disease data are limited and variable. This study aims to investigate the epidemic process of leptospirosis, while its subject focuses on applying time series forecasting methodologies suitable for epidemiological contexts. Methods: The ARIMA model was applied to each country to identify temporal patterns and generate short-term morbidity forecasts using confirmed leptospirosis case data from the European Centre for Disease Prevention and Control from 2010 to 2022. Results. The model’s performance was assessed using the Mean Absolute Percentage Error (MAPE), revealing that Lithuania had the most accurate forecast, with a MAPE of 6.841. The accuracy of Estonia and Latvia was moderate, likely reflecting case variability and differing regional epidemiological patterns. These results demonstrate that ARIMA models can effectively capture general trends and provide short-term morbidity predictions, even within diverse epidemiological settings, suggesting ARIMA’s utility in low-resource and variable data environments. Conclusions. The scientific novelty of this study lies in its application of ARIMA modelling to leptospirosis forecasting within the Baltic region, where comprehensive time series studies on the disease are scarce. From a practical perspective, this model offers a valuable tool for public health authorities by supporting targeted interventions, more efficient resource allocation, and timely response planning for leptospirosis and similar zoonotic diseases. The ARIMA model’s adaptability and straightforward application across countries demonstrate its potential for informing public health decision-making in settings with limited data on disease patterns. Future research should expand on this model by developing multivariate forecasting approaches incorporating additional factors to refine the model’s predictive accuracy. This approach could further improve our understanding of leptospirosis dynamics and enhance intervention strategies.

Keywords


epidemic model; epidemic process; epidemic simulation; simulation; Leptospirosis; ARIMA

Full Text:

PDF

References


Sykes, J. E., Haake, D. A., Gamage, C. D., Mills, W. Z., & Nally, J. E. A global one health perspective on leptospirosis in humans and animals. Journal of the American Veterinary Medical Association, 2022, vol. 260, iss. 13, pp. 1–8. DOI: 10.2460/javma.22.06.0258.

Costa, F., Hagan, J. E., Calcagno, J., Kane, M., Torgerson, P., Martinez-Silveira, M. S., Stein, C., Abela-Ridder, B., & Ko, A. I. Global Morbidity and Mortality of Leptospirosis: A Systematic Review. PLoS Neglected Tropical Diseases, 2015, vol. 9, iss. 9, article no. e0003898. DOI: 10.1371/journal.pntd.0003898.

Torgerson, P. R., Hagan, J. E., Costa, F., Calcagno, J., Kane, M., Martinez-Silveira, M. S., Goris, M. G. A., Stein, C., Ko, A. I., & Abela-Ridder, B. Global Burden of Leptospirosis: Estimated in Terms of Disability Adjusted Life Years. PLOS Neglected Tropical Diseases, 2015, vol. 9, iss. 10, article no. e0004122. DOI: 10.1371/journal.pntd.0004122.

Tazerji, S. S., Nardini, R., Safdar, M., Shehata, A. A., & Duarte, P. M. An Overview of Anthropogenic Actions as Drivers for Emerging and Re-Emerging Zoonotic Diseases. Pathogens, 2022, vol. 11, iss. 11, article no 1376. DOI: 10.3390/pathogens11111376.

Baharom, M., Ahmad, N., Hod, R., Fs, A., & Tangang, F. The Impact of Meteorological Factors on Communicable Disease Incidence and Its Projection: A Systematic Review. International Journal of Environmental Research and Public Health, 2021, vol. 18, iss. 21, pp. 11117–11117. DOI: 10.3390/ijerph182111117.

Sonne, C., Lakemeyer, J., Desforges, J.-P., Eulaers, I., Persson, S., Stokholm, I., Galatius, A., Gross, S., Gonnsen, K., Lehnert, K., Andersen-Ranberg, E., Olsen, M.T., Dietz, R., & Siebert, U. A review of pathogens in selected Baltic Sea indicator species. Environment International, 2020, vol. 137, pp. 105565–105565. DOI: 10.1016/j.envint.2020.105565.

Lehtla, A., Must, K., Lassen, B., Orro, T., Jokelainen, P., & Viltrop, A. Leptospira spp. in Cats in Estonia: Seroprevalence and Risk Factors for Seropositivity. Vector-Borne and Zoonotic Diseases, 2020, vol. 20, iss. 7, pp. 524–528. DOI: 10.1089/vbz.2019.2555.

Latvia - Traveler view | Travelers’ Health | CDC. 2022, Available at: https://wwwnc.cdc.gov/travel/destinations/traveler/none/latvia (Accessed 1 Sep. 2024).

Jeske, K., Schulz, J., Tekemen, D., Balčiauskas, L., Balčiauskienė, L., Hiltbrunner, M., Drewes, S., Mayer-Scholl, A., Heckel, G., & Ulrich, R. G. Cocirculation of Leptospira spp. and multiple orthohantaviruses in rodents, Lithuania, Northern Europe. Transboundary and emerging diseases, 2022, vol. 69, iss. 5, pp. e3196–e3201. DOI: 10.1111/tbed.14470.

Bazilevych, K., Krivtsov, S., & Butkevych, M. Intelligent evaluation of the informative features of cardiac studies diagnostic data using Shannon method. CEUR Workshop Proceedings, 2021, vol. 3003, pp. 65-75.

Strilets, V., Donets, V., Ugryumov, M., Artiuch, S., Zelenskyi, R., & Goncharova, T. Agent-oriented data clustering for medical monitoring. Radioelectronic and computer systems, 2022, vol. 2022, iss. 1, pp.103–114. DOI: 10.32620/reks.2022.1.08.

Mochurad, L., & Ranto, R. A parallel algorithm for the detection of eye disease. Advances in Intelligent Systems, 2023, vol. 158, pp. 111-125. DOI: 10.1007/978-3-031-24475-9_10.

Izonin, I., Tkachenko, R., Yemets, K., & Havryliuk, M. An interpretable ensemble structure with a non-iterative training algorithm to improve the predictive accuracy of healthcare data analysis. Scientific Reports, 2024, vol. 14, no. 1, article no. 12947. DOI: 10.1038/s41598-024-61776-y.

Babaiev, V. M., Kadykova, I. M., Husieva, Yu. Yu., & Chumachenko, I. V. The method of adaptation of a project-oriented organization’s strategy to exogenous changes. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2017, iss. 2, pp. 134-140.

Sy, C., Bernardo, E., Miguel, A., San Juan, J. L., Mayol, A. P., Ching, P. M., Culaba, A., Ubando, A., & Mutuc, J. E. Policy Development for Pandemic Response Using System Dynamics: a Case Study on COVID-19. Process Integration and Optimization for Sustainability, 2020, vol. 4, iss. 4, article no. 497. DOI: 10.1007/s41660-020-00130-x.

Meniailov, I., & Padalko, H. Application of multidimensional scaling model for Hepatitis C data dimensionality reduction. CEUR Workshop Proceedings, 2022, vol. 3348, pp. 34-43.

Chumachenko, D., Bazilevych, K., Butkevych, M., Meniailov, I., Parfeniuk, Y., Sidenko, I., & Chumachenko, T. Methodology for assessing the impact of emergencies on the spread of infectious diseases. Radioelectronic and Computer Science, 2024, vol. 2024, iss. 3, pp. 6-26. DOI: 10.32620/reks.2024.3.01.

Conceição, K. S., Andrade, M. G., Louzada, F. Zero-modified Poisson model: Bayesian approach, influence diagnostics, and an application to a Brazilian leptospirosis notification data. Biometrical Journal, 2013, vol. 55, iss. 5, pp. 661–678. DOI: 10.1002/bimj.201100175.

Mukdasai, K., Sabir, Z., Raja, M. A. Z., Sadat, R., Ali, M. R., & Singkibud, P. A numerical simulation of the fractional order Leptospirosis model using the supervise neural network. Alexandria Engineering Journal, 2022, vol. 61, iss. 12, pp. 12431–12441. DOI: 10.1016/j.aej.2022.06.013.

Bhalraj, A., Azmi, A., & Mohd, H. Analytical and numerical solutions of Leptospirosis model. International Journal of Mathematics and Computer Science, 2021, vol. 16, iss. 3, pp. 949-961.

Minter, A., Costa, F., Khalil, A., Childs, J.E., Diggle, P. J., Ko, A. I., Begon, M. Optimal Control of Rat-Borne Leptospirosis in an Urban Environment. Frontiers in Ecology and Evolution, 2019, vol. 7, 209. DOI: 10.3389/fevo.2019.00209.

Qu, H., Saifullah, S., Khan, J., Khan, A., Rahman, M., & Zheng, G. Dynamics of leptospirosis disease in context of piecewise classical-global and classical-fractional operators. Fractals, 2022, vol. 30, iss. 08, article no. 2240216. DOI: 10.1142/s0218348x22402162.

Engida, H., Theuri, D. M., Gathungu, D. K., Gachohi, J., & Alemneh, H. T. A Mathematical Model Analysis for the Transmission Dynamics of Leptospirosis Disease in Human and Rodent Populations. Computational and Mathematical Methods in Medicine, 2022, vol. 2022, iss. 1, pp. 1–23. DOI: 10.1155/2022/1806585.

Rahmat, F., Zulkafli, Z., Juraiza Ishak, A., Mohd Noor, S. B., Yahaya, H., & Masrani, A. Exploratory Data Analysis and Artificial Neural Network for Prediction of Leptospirosis Occurrence in Seremban, Malaysia Based on Meteorological Data. Frontiers in Earth Science, 2020, vol. 8, article no. 377. DOI: 10.3389/feart.2020.00377.

Athithan, S., Shukla, V. P., & Biradar, S. R. Voting Rule Based Cellular Automata Epidemic Spread Model for Leptospirosis. Indian Journal of Science and Technology, 2015, vol. 8, iss. 4, article no. 337. DOI: 10.17485/ijst/2015/v8i4/60441.

Ikram, R., Khan, A., Khan, A., Khan, T., & Zaman, G. Analytical approximate solution of leptospirosis epidemic model with standard incidence rate. Computational Methods for Differential Equations, 2019, vol. 7, iss. 3, pp. 370–382.

Gallego, M. C., & Simoy, M. S. Mathematical modeling of leptospirosis: A dynamic regulated by environmental carrying capacity. Chaos, Solitons and Fractals, 2021, vol. 152, article no. 111425. DOI: 10.1016/j.chaos.2021.111425.

Helfenstein, U. Box-Jenkins modelling in medical research. Statistical Methods in Medical Research, 1996, vol. 5, iss. 1, pp. 3–22. DOI: 10.1177/096228029600500102.

European Centre for Disease Prevention and Control. Annual Epidemiological Report 2016 – Leptospirosis. Stockholm: ECDC; 2016. Available at: http://ecdc.europa.eu/en/healthtopics/leptospirosis/Pages/Annual-epidemiological-report-2016.aspx (Accessed 1 Sep. 2024).

European Centre for Disease Prevention and Control. Leptospirosis. ECDC. Annual Epidemiological Report for 2018. Stockholm: ECDC; 2022. Available at: https://www.ecdc.europa.eu/sites/default/files/documents/Leptospirosis-AER-2018_Final.pdf (Accessed 1 Sep. 2024).

European Centre for Disease Prevention and Control. Leptospirosis. ECDC. Annual Epidemiological Report for 2022. Stockholm: ECDC; 2024. Available at: https://www.ecdc.europa.eu/sites/default/files/documents/LEPT_AER_2022_Report.pdf (Accessed 1 Sep. 2024).




DOI: https://doi.org/10.32620/reks.2024.4.01

Refbacks

  • There are currently no refbacks.