Intrusion detection and prevention systems as a component of ensuring compliance with regulatory documents
Abstract
Keywords
Full Text:
PDFReferences
Hassan, A. O., Ewuga, S. K., Abdul, A. A., Abrahams, T. O., Oladeinde, M. & Dawodu, S. O. CYBERSECURITY IN BANKING: A GLOBAL PERSPECTIVE WITH A FOCUS ON NIGERIAN PRACTICES. Computer Science & IT Research Journal, 2024, vol. 5, no. 1, pp. 41-59. DOI: 10.51594/csitrj.v5i1.701.
Ashoor, A. S., & Gore, S. Difference between intrusion detection system (IDS) and intrusion prevention system (IPS). Advances in Network Security and Applications: Proceedings of 4th International Conference, CNSA 2011, Springer, 2011, vol. 4, pp. 497-501. DOI: 10.1007/978-3-642-22540-6_48.
Perwej, Y., Abbas, S. Q., Dixit, J. P., Akhtar, N., & Jaiswal, A. K. A systematic literature review on the cyber security. International Journal of scientific research and management, 2021, vol. 9, no. 12, pp. 669-710. DOI: 10.18535/ijsrm/v9i12.ec04.
Moore, W., & Frye, S. Review of HIPAA, part 2: limitations, rights, violations, and role for the imaging technologist. Journal of nuclear medicine technology, 2020, vol. 48, no. 1, pp. 17-23. DOI: 10.2967/jnmt.119.227827.
Shabina, Ali, R. F., Jahankhani, H., Siddiqi, Y., & Hassan, B. Ensuring Securing PII Data in the AWS Cloud: A Comprehensive Guide to PCI DSS Compliance. Cybersecurity and Artificial Intelligence: Transformational Strategies and Disruptive Innovation, Springer, 2024, pp. 185-216. DOI: 10.1007/978-3-031-52272-7_8.
Williams, B., & Adamson, J. PCI Compliance: Understand and implement effective PCI data security standard compliance. CRC Press, 2022, 334 p. DOI: 10.1201/9781003100300.
Azeez, N. A., Bada, T. M., Misra, S., Adewumi, A., Van der Vyver, C., & Ahuja, R. Intrusion detection and prevention systems: an updated review. Data Management, Analytics and Innovation: Proceedings of ICDMAI 2019, 2020, vol. 1, pp. 685-696. DOI: 10.1007/978-981-32-9949-8_48.
Masdari, M., & Khezri, H. A survey and taxonomy of the fuzzy signature-based intrusion detection systems. Applied Soft Computing, 2020, vol. 92, article no. 106301, pp. 1-19. DOI: 0.1016/j.asoc.2020.106301
Nassif, A. B., Talib, M. A., Nasir, Q., & Dakalbab, F. M. Machine Learning for Anomaly Detection: A Systematic Review. IEEE Access, 2021, vol. 9, pp. 78658-78700. DOI: 10.1109/ACCESS.2021.3083060.
Haughton, S. A., & Romaniuk, S. N. Civil Liberties and Homeland Security. The Handbook of Homeland Security, CRC Press, 2023, pp. 525-531. DOI: 10.4324/9781315144511-73.
White, G. B., & Sjelin, N. The NIST cybersecurity framework. Research Anthology on Business Aspects of Cybersecurity, IGI Global, 2022, pp. 39-55. DOI: 10.4018/978-1-6684-3698-1.ch003.
Moreira, F. R., Da Silva Filho, D. A., Nze, G. D. A., de Sousa Júnior, R. T., & Nunes, R. R. Evaluating the performance of NIST’s framework cybersecurity controls through a constructivist multicriteria methodology. IEEE Access, 2021, vol. 9, pp. 129605-129618. DOI: 10.1109/ACCESS.2021.3113178.
Alshar'e, M. Cyber security framework selection: Comparision of NIST and ISO27001. Applied computing Journal, 2023, pp. 245-255. DOI: 10.52098/acj.202364.
Hassan, M. A., Shukur, Z., & Hasan, M. K. An efficient secure electronic payment system for e-commerce. Computers, 2020, vol. 9, no. 3, article no. 66, pp. 1-13. DOI: 10.3390/computers9030066.
Sobb, T., Turnbull, B., & Moustafa, N. Supply chain 4.0: A survey of cyber security challenges, solutions and future directions. Electronics, 2020, vol. 9, no. 11, article no, 1864, pp. 1-31. DOI: 10.3390/electronics9111864.
Sugiantoro, B., Anshari, M., & Sudrajat, D. Developing framework for web based e-commerce: secure-SDLC. Journal of Physics: Conference Series, 2020, vol. 1566, no. 1, article no. 012020, pp. 1-9. DOI: 10.1088/1742-6596/1566/1/012020.
Tetskyi, A., Kharchenko, V., Uzun, D., & Nechausov, A. Architecture and Model of Neural Network Based Service for Choice of the Penetration Testing Tools. International Journal of Computing, 2021, vol. 20, no. 4, pp. 513-518. DOI: 10.47839/ijc.20.4.2438.
Tetskyi, A., Perepelitsyn, A., Illiashenko, O., Morozova, O., & Uzun, D. Ensuring cybersecurity of FPGA as a service with the use of penetration testing of components. Radioelectronic and Computer Systems, 2024, no. 2, pp. 160-172. DOI: 10.32620/reks.2024.2.13.
Perepelitsyn, A., & Kulanov, V. Analysis of Ways of Digital Rights Management for FPGA-as-a-Service for AI-Based Solutions. Proceedings 2023 IEEE 13th International Conference on Dependable Systems, Services and Technologies, DESSERT 2023, 2023. pp. 1-5, DOI: 10.1109/DESSERT61349.2023.10416526.
A guide to the PCI DSS compliance levels. Available: https://www.itgovernance.eu/blog/en/a-guide-to-the-4-pci-dss-compliance-levels (accessed June 7, 2024).
González-Granadillo, G., González-Zarzosa, S., & Diaz, R. Security information and event management (SIEM): analysis, trends, and usage in critical infrastructures. Sensors, 2021, vol. 21, no. 14, article no. 4759, pp. 1-28. DOI: 10.3390/s21144759.
Owen, H., Zarrin, J., & Pour, S. M. A survey on botnets, issues, threats, methods, detection and prevention. Journal of Cybersecurity and Privacy, 2022, vol. 2, no. 1, pp. 74-88. DOI: 10.3390/jcp2010006.
Rao, S., Verma, A. K., & Bhatia, T. A review on social spam detection: Challenges, open issues, and future directions. Expert Systems with Applications, 2021, no. 186, article no. 115742, pp. 1-31. DOI: 10.1016/j.eswa.2021.115742.
Bhardwaj, A., Al-Turjman, F., Sapra, V., Kumar, M., & Stephan, T. Privacy-aware detection framework to mitigate new-age phishing attacks. Computers & Electrical Engineering, 2021, vol. 96, article no. 107546, pp. 1-10. DOI: 10.1016/j.compeleceng.2021.107546.
Mahboub, S. A., Ahmed, E. S. A., & Saeed, R. A. Smart IDS and IPS for cyber-physical systems. Artificial intelligence paradigms for smart cyber-physical systems, IGI global, 2021, pp. 109-136. DOI: 10.4018/978-1-7998-5101-1.ch006.
Sharma, D. S. Enhancing False Positive Detection in IDS/IPS Using Honeypots: A Case Study with CSE-CIC-2018 Dataset. Available: https://cdn.iiit.ac.in/cdn/web2py.iiit.ac.in/research_centres/publications/download/mastersthesis.pdf.855db95538568de8.494949545f4879646572616261645f4d535f5068445f546865736973202833292e706466.pdf (accessed June 7, 2024).
Hindy, H., Brosset, D., Bayne, E., Seeam, A. K., Tachtatzis, C., Atkinson, R., & Bellekens, X. A taxonomy of network threats and the effect of current datasets on intrusion detection systems. IEEE Access, 2020, vol. 8, pp. 104650-104675. DOI: 10.1109/ACCESS.2020.3000179.
Kim, A., Park, M., & Lee, D. H. AI-IDS: Application of deep learning to real-time Web intrusion detection. IEEE Access, 2020, vol. 8, pp. 70245-70261. DOI: 10.1109/ACCESS.2020.2986882.
Ghazi, D. S., Hamid, H. S., Zaiter, M. J., & Behadili, A. S. G. Snort Versus Suricata in Intrusion Detection. Iraqi Journal of Information and Communication Technology, 2024, vol. 7, no. 2, pp. 73-88. DOI: 10.31987/ijict.7.2.290.
DOI: https://doi.org/10.32620/reks.2024.3.11
Refbacks
- There are currently no refbacks.