Modeling waves of a strike drones swarm for a massive attack on enemy targets
Abstract
Keywords
Full Text:
PDFReferences
Yaacoub, Jp A., Noura, H., Salman, O., & Chehab, A. Security analysis of drones systems: Attacks, limitations, and recommendations. Internet of Things, 2020, vol. 11, article 100218. 39 p. DOI: 10.1016/j.iot.2020.100218
Chen, W., Zhu, J., Liu, J., & Guo, H. A fast coordination approach for large-scale drone swarm. Journal of Network and Computer Applications, 2024, vol. 221, iss. 103769, 12 p. DOI: 10.1016/j.jnca.2023.103769.
Orfanus, D., De Freitas, E. P., & Eliassen, F. Self-organization as a supporting paradigm for military UAV relay networks. IEEE Communications letters, 2016, vol. 20(4), pp. 804-807. DOI: 10.1109/LCOMM.2016.2524405
Chen, W., Liu, J., Guo, H., & Kato, N. Toward robust and intelligent drone swarm: Challenges and future directions. IEEE Network, 2020, vol. 34(4), pp. 278-283. DOI: 10.1109/MNET.001.1900521.
Tahir, A., Böling, J., Haghbayan, M. H., Toivonen, H. T., & Plosila, J. Swarms of unmanned aerial vehicles—A survey. Journal of Industrial Information Integration, 2019, vol. 16, iss. 100106. 7 p. DOI: 10.1016/j.jii.2019.100106.
Tian, W., Zhao, Y., Hou, R., Dong, M., Ota, K., Zeng, D., & Zhang, J. A Centralized Control-Based Clustering Scheme for Energy Efficiency in Underwater Acoustic Sensor Networks. IEEE Transactions on Green Communications and Networking, 2023, vol. 7, iss. 2, pp. 668-679. DOI: 10.1109/TGCN.2023.3249208.
Prymirenko, V., Demianiuk, A., Shevtsov, R., Bazilo, S., & Steshenko, P. The impact of the joint use of false aircraft targets in a group of combat unmanned aerial vehicles on the results of destruction. Radioelectronic and Computer Systems, 2022, vol. 3, pp. 132-140. DOI: 10.32620/reks.2022.3.10.
Wang, F., Huang, J., Low, K.H., Nie, Z., & Hu, T. AGDS: adaptive goal-directed strategy for swarm drones flying through unknown environments. Complex Intell. Syst., 2023, vol. 9, pp. 2065-2080. DOI: 10.1007/s40747-022-00900-9.
Liu, C., Sun, S., Tao, C., Shou, Y., & Xu, B. Sliding mode control of multi-agent system with application to UAV air combat. Computers & Electrical Engineering, 2021, vol. 96, part A, article no. 107491. 13 p. DOI: 10.1016/j.compeleceng.2021.107491.
Wu, Y., Wu, S., & Hu, X. Multi-constrained cooperative path planning of multiple drones for persistent surveillance in urban environments. Complex & Intelligent Systems, 2021, vol. 3, pp. 1633-1647. DOI: 10.1007/s40747-021-00300-5.
Kritsky, D. N., Ovsiannik, V. M., Pogudina, O. K., Shevel, V. V., & Druzhinin, E. A. Model for intercepting targets by the unmanned aerial vehicle. In Advances in Intelligent Systems and Computing, 2020, vol. 1019, pp. 197-206. DOI: 10.1007/978-3-030-25741-5_20.
Jawad, Y., Hashem, H., Jukka, H., Hannu, T., & Juha, P. Formation Maintenance and Collision Avoidance in a Swarm of Drones. 3rd International Symposium on Computer Science and Intelligent Control, 2019, pp. 1-6. DOI: 10.1145/3386164.3386176.
Sabziev, E. A control algorithm for joint flight of a group of drones. Scientific Journal of Silesian University of Technology. Series Transport, 2021, vol. 110, pp. 157-167. DOI: 10.20858/sjsutst.2021.110.13.
He, D., Yang, G., Li, H., Chan, S., Cheng, Y. & Guizani, N. An effective counter measure against UAV swarm attack. IEEE Network, 2020, vol. 35, iss. 1, pp. 380-385. DOI: 10.1109/MNET.011.2000380.
Chamola, V., Kotesh, P., Agarwal, A., Naren Gupta, N., & Guizani, M. A comprehensive review of unmanned aerial vehicle attacks and neutralization techniques. Ad hoc Netw, 2021, vol. 111, article no. 102324. 20 p. DOI: 10.1016/j.adhoc.2020.102324.
Shahid, S., Zhen, Z., Javaid, U., & Wen, L. Offense-Defense Distributed Decision Making for Swarm vs Swarm Confrontation While Attacking the Aircraft Carriers. Drones, 2022, vol. 6, iss. 10, article no. 271. 21 p. DOI: 10.3390/drones6100271.
Yan, J., Xie, H., & Li, J. Modeling and optimization of deploying anti-UAV swarm detection systems based on the mixed genetic and monte carlo algorithm. IEEE International Conference on Unmanned Systems, 2021, pp. 773-779. DOI: 10.1109/ICUS52573.2021.9641465.
Zhao, J., Zhang, J., Li, D., & Wang, D. Vision-based anti UAV detection and tracking. IEEE Transactions on Intelligent Transportation Systems, 2022, vol. 23, iss. 12, pp. 25323-25334. DOI: 10.48550/arXiv.2205.10851.
Chen, Y., Zhang, H., Fu, X., & Xu, J. Robustness analysis and modeling of UAV cluster system based on complex network. 2nd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology, 2022, pp. 743-748. DOI: 10.1109/CEI57409.2022.9950164.
Lappas, V., Shin, H-S., Tsourdos, A., Lindgren, D., Bertrand, S., Marzat, J., Piet-Lahanier, H., Daramouskas, Y., & Kostopoulos, V. Autonomous Unmanned Heterogeneous Vehicles for Persistent Monitoring. Drones, 2022, vol. 6, iss. 4, article no. 94. 27 p. DOI: 10.3390/drones6040094.
Carli, R., Cavone, G., Epicoco, N., Di Ferdinando, M., Scarabaggio, P., & Dotoli, M. Consensus-based algorithms for controlling swarms of unmanned aerial vehicles. International Conference on Ad-Hoc Networks and Wireless, Lecture Notes in Computer Science, 2020, vol. 12338, pp. 84-99. DOI: 10.1007/978-3-030-61746-2_7.
Fan, D. D., Theodorou, E. A., & Reeder, J. Model-based stochastic search for large scale optimization of multi-agent UAV swarms. IEEE Symposium Series on Computational Intelligence, 2018, pp. 2216-2222. DOI: 10.48550/arXiv.1803.01106.
Sanders, A. W. Drone swarms. US Army School for Advanced Military Studies Fort Leavenworth United States: Fort Leavenworth, 2017, KS, USA. 40 p. Available at: https://apps.dtic.mil/sti/citations/AD1039921 (accessed 12.12.2023).
Tianfeng, F., Xiaojing, M., & Chi, Z. Development status of anti UAV swarm and analysis of new defense system. Journal of Physics: Conference Series, 2023, vol. 2478, iss. 9. 14 p. DOI: 10.1088/1742-6596/2478/9/092011.
Xu, Z., Hao, F., Wang, Y., & Bai, Y. Swarm Operation System and Its Intelligent Development. Journal of Physics: Conference Series, 2023, vol. 2460, article no. 012148. 7 p. DOI: 10.1088/1742-6596/2460/1/012148.
Li, J., Rombaut, E., & Vanhaverbeke, L. A systematic review of agent-based models for autonomous vehicle sin urban mobility and logistics: Possibilities for integrated simulation models. Computers, Environment and Urban Systems, 2021, vol. 89, article no. 101686. 20 p. DOI: 10.1016/j.compenvurbsys.2021.101686.
Pasek, P., & Kaniewski, P. A review of consensus algorithms used in Distributed State Estimation for UAV swarms. IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), 2022, pp. 472-477. DOI: 10.1109/TCSET55632.2022.9766903.
Phadke, A., Medrano, F. A., Sekharan, C. N., & Chu, T. Designing UAV Swarm Experiments: A Simulator Selection and Experiment Design Process. Sensors, 2023, vol. 23, iss. 17, article no. 7359. DOI: 10.3390/s23177359.
Blais, M.-A., & Akhloufi, M. A. Reinforcement learning for swarm robotics: An overview of applications, algorithms and simulators. Cognitive Robotics, 2023, vol. 3, pp. 226-256. DOI: 10.1016/j.cogr.2023.07.004.
Fedorovich, O., Lukhanin, M., Prokhorov, O., Slomchynskyi, O., Hubka, O., Leshchenko, Y. Simulation of arms distribution strategies by combat zones to create military parity of forces. Radioelectronic and Computer Systems, 2023, vol. 4, pp. 209-220. DOI: 10.32620/reks.2023.4.15.
Schiffmann, O., Hicks, B., Nassehi, A., Gopsill, J., Valero, M. A Cost–Benefit Analysis Simulation for the Digitalisation of Cold Supply Chains. Sensors, 2023, vol. 23, article no. 4147. DOI: 10.3390/s23084147.
DOI: https://doi.org/10.32620/reks.2024.2.16
Refbacks
- There are currently no refbacks.