The method of determining optimal control of the thermoelastic state of piece-homogeneous body using a stationary temperature field

Oleksii Nikolaev, Mariia Skitska

Abstract


This paper proposes a new highly effective method for determining the optimal control of the stress-strain state of spatially multi-connected composite bodies using a stationary temperature field. The proposed method is considered based on the example of a stationary axisymmetric thermoelastic problem for a space with a spherical inclusion and cavity. The proposed method is based on the generalized Fourier method and reduces the original problem to an equivalent problem of optimal control, in which the state of the object is determined by an infinite system of linear algebraic equations, the right-hand side of which parametrically depends on the control. At the same time, the functional of the cost of the initial problem is transformed into a quadratic functional, which depends on the state of the equivalent system and parametrically on the control. The limitation on the temperature distribution is replaced by the value of the control norm in the space of square summable sequences. In fact, this paper considers for the first time the problem of optimal control of an infinite system of linear algebraic equations and develops a method for its solution. The proposed method is based on presenting the solutions of infinite systems in a parametric form, which makes it possible to reduce equivalent problem to the problem of conditional extremum of a quadratic functional, which explicitly depends on the control. A further solution to this problem A further solution to this problem is found by the Lagrange method using the spectral decomposition of the quadratic functional matrix. found by the Lagrange method using the spectral decomposition of the quadratic functional matrix. The method developed in this paper is strictly justified. For all infinite systems, the Fredholm property of their operators is proved. As an important result necessary for substantiation, for the first time, an estimate from below of the module of the multi-parameter determinant of the resolving system of the boundary value problem of conjugation – space with a spherical inclusion – was obtained when solving it using the Fourier method. The theorem that establishes the conditions for the existence and uniqueness of the solution of equivalent problem or optimal control problem without restrictions in the space of square summable sequences is proved. The numerical algorithm is based on a reduction method for infinite systems of linear algebraic equations. Estimates of the practical accuracy of the numerical algorithm demonstrated the stability of the method and sufficiently high accuracy even with close location of the boundary surfaces. Graphs showing the optimal temperature distribution for various geometric parameters of the problem and their analysis are provided. The proposed method extends to boundary value problems with different geometries.

Keywords


optimal control; thermoelastic state; stationary temperature field; multi-connected piecewise homogeneous body; generalized Fourier method; infinite system of linear algebraic equations; Fredholm operator; quadratic functional; spectral expansion; reducti

Full Text:

PDF

References


Sethi, S. P., & Thompson, G. L. Optimal Control Theory: Applications to Management Science and Economics. New York, Springer, 2000. 506 p. DOI: 10.1007/0-387-29903-3.

BendsØe, M. P., & Sigmund, O. Topology Optimization. Theory, Methods and Applications. Berlin, Heidelberg, New York, Springer Verlag, 2003. 370 p. DOI: 10.1007/978-3-662-05086-6.

Lenhart, S., & Workman, J. T. Optimal Control Applied to Biological Models. London, Chapman & Hall/CRC, 2007. 280 p. DOI: 10.1201/9781420011418.

Anita, S., Arnautu, V., & Capasso, V. An Introduction to Optimal Control Problems in Life Sciences and Economics: From Mathematical Models to Numerical Simulation with MATLAB. Birkhäuser, 2010. 244 p. DOI: 10.1007/978-0-8176-8098-5.

Chen, P., & Islam, S. M. N. Optimal Control Models in Finance. Boston, Springer, 2005. 200 p. DOI: 10.1007/b101888.

Boltyanski, V. G., Gamkreldze, R. V., Mish-chenko, E. F., & Pontryagin, L. S. The Maximum Principle in the Theory of Optimal Processes of Control. IFAC Proceedings Volumes, 1960, vol. 1, no. 1, pp. 464 – 469. DOI: 10.1016/S1474-6670(17)70089-4.

Pontryagin, L. S., Boltyanskii, V. G., Gamkre-lidze, R. V., & Mishchenko, E. F. The Mathematical Theory of Optimal Processes. New York: Wiley Interscience, 1962. 360 p. DOI: 10.1002/zamm.19630431023.

Bellman, R. Dynamic programming and a new formalism in the calculus of variations. Proc. Natl. Acad. Sci. USA, 1954, vol. 40, pp. 231-235. DOI: 10.1073/pnas.40.4.231.

Bellman, R. Dynamic Programming. Princeton University Press, 1957. 339 p. Available at: https://gwern.net/doc/statistics/decision/1957-bellman-dynamicprogramming.pdf (accessed March 7, 2024).

Wang, P. K. C. Control distributed parameter systems. Advances in control systems. Theory and applications. Ed. By C.T. Leondes, vol. 1. New York – London: Acad. Press, 1964, pp. 75-172. DOI: 10.1016/B978-1-4831-6717-6.50008-5.

Lions, J. -L. Optimal Control of Systems Governed by Partial Differential Equations. Berlin, Heidelberg, Springer Verlag, 1971. 396 p. Available at: https://link.springer.com/book/9783642650260 (accessed March 7, 2024).

Lions, J. -L., & Stampacchia, G. Variational inequalities. Comm. Pure and Appl. Math, 1967, vol. 20, pp. 493 – 519. DOI: 10.1002/cpa.3160200302.

Fichera, G. Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei, 1964, vol. 8, no. 7, pp. 91-140. Available at: http://www.numdam.org/item/SJL_1966-1967___3_64_0/ (accessed March 9, 2024).

Lure, A. K. The Mayer – Bolza Problem for Multiple Integrals: Some Optimal Problems for Elliptic Differential Equations Arising in Magnetohydrodynamics. In book: Topics in Optimization (ed. By G. Leitmann), New York, London: Academic Press, 1967, pp. 147-197. DOI: 10.1016/S0076-5392(09)60041-2.

Bonnans, J. F., & Casas, E. A boundary Pont-ryagin’s principle for the optimal control of state-constrained elliptic systems. In book: International Series of Numerical Mathematics, vol. 107, 1992, pp. 241-249. Birkhauser Verlag Basel. Available at: https://link.springer.com/chapter/10.1007/978-3-0348-8625-3_22 (accessed March 7, 2024).

Casas, E., & Trӧltzsch, F. First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations. SIAM Journal on Control and Optimization, 2009, vol. 48, no. 2, pp. 688-718. DOI: 10.1137/080720048.

Casas, E., & Trӧltzsch, F. Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations. ESAIM: Control, Optimization and Calculus of Variations, 2011, vol. 17, pp. 771-800. DOI: 10.1051/cocv/2010025.

Ciuperca, I., Talibi, M., & Jai, M. On the optimal control of coefficients in elliptic problems. Application to the optimization of the head slider. ESAIM: Control, Optimization and Calculus of Variations, 2005, vol. 11, pp. 102-121. DOI: 10.1051/cocv:2004029.

Ge, L., Niu, H., & Zhou, J. Convergence Analysis and Error Estimate for Distributed Optimal Control Problems Governed by Stokes Equations with Velocity-Constraint. Adv. Appl. Math. Mech., 2022, vol. 14, no. 1, pp. 33-55. DOI: 10.4208/aamm.OA-2020-0302.

Sergienko, I. V., & Deineka, V. S. Optimal Control of Distributed Systems with Conjugation Conditions. New York: Kluwer Academic Publihers, 2005. 383 p. DOI: 10.1007/b104441.

Allendes, A., Fuica, F., Otarola, E., & Quero, D. A posteriori error estimates for semilinear optimal control problems. ESAIM: M2AN, 2021, vol. 55, pp. 2293–2322. DOI: 10.1051/m2an/2021033.

Becker, R., Kapp, H., & Rannacher, R. Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept. SIAM: Journal on Control and Optimization, 2000, vol. 39, no. 1, pp. 113-132. DOI: 10.1137/S036301299935109.

Farag, M. H. The gradient projection method for solving an optimal control problem. Applicationes mathematicae, 1996, vol. 24, no. 2, pp. 141-147. Available at: http://eudml.org/doc/219158 (accessed March 9, 2024).

Farag, M. H. Computing optimal control with a quasilinear parabolic partial differential equation. Surveys in Mathematics and its Applications, 2009, vol. 4, pp. 139-153. Available at: http://eudml.org/doc/226339 (accessed March 9, 2024).

Arada, N., & Raymond, J.-P. Optimal control problems with mixed control-state constraints. SIAM J. Control Optim.. 2000, vol. 39, no. 5, pp. 1391-1407. DOI: 10.1137/S0363012999357926.

Kenne, C., Djomegne, L. & Zongo, P. Second-order optimality conditions for the bilinear optimal control of a degenerate parabolic equation. arXiv:2212.11046v1 [math.OC], 2022, pp. 1-19. DOI: 10.48550/arXiv.2212.11046.

Thünen, A., Leyffer, S., & Sager, S. State elimination for mixed-integer optimal control of partial differential equations by semigroup theory. Optim Control Appl Meth., 2022, vol. 43, pp. 867-883. DOI: 10.1002/oca.2861.

Alam, T.-M., Nicaise, S., & Paquet, L. An optimal control problem governed by heat equation with nonconvex constraints applied to selective laser melting process. Minimax Theory and its Applications, 2021, vol. 6, no. 2, pp.191-204. Available at: https://hal.science/hal-02302403 (accessed March 9, 2024).

Mazari, I. Existence of optimal shapes in parabolic bilinear optimal control problems. Preprint, 2023, pp. 1-23. Available at: https://hal.science/hal-040022742023 (accessed March 9, 2024).

Pan, L., & Yong, J. Optimal control for quasilinear retarded parabolic systems. ANZIAMJ, 2001, vol. 42, pp. 532-551. DOI: 10.1017/S1446181100012268.

Lou, H. Optimality conditions for semilinear parabolic equations with controls in leading term. ESAIM: COCV, 2011, vol. 17, pp. 975–994. DOI: 10.1051/cocv/2010034.

Vlasenko, L. A., & Samoilenko, A. M. Optimal control with impulsive component for systems described by implicit parabolic operator differential equations. Ukrainian Mathematical Journal, 2009, vol. 61, pp. 1250-1263. DOI: 10.1007/s11253-010-0274-1.

Sergienko, I. V., & Deineka, V. S. Optimal control of the parabolic system and identification of its parameters for the known heat flows. Cybernetics and Systems Analysis, 2014, vol. 50, no. 1, pp. 38-59. DOI: 10.1007/s10559-014-9591-y.

Meriç, R. A. Coupled optimization in steady-state thermoelasticity. Journal of Thermal Stresses, 1985, vol. 8, no. 3, pp. 333-347. DOI: 10.1080/01495738508942240.

Zasadna, K. E. Numerical solution of the problem of optimal control of the heating of a thermoelastic plate by internal heat sources. Journal of Soviet Mathematics, 1993, vol. 63, pp. 70-74. DOI: 10.1007/BF01103085.

Hafdallah, A., & Ayadi, A. Optimal control of a thermoelastic body with missing initial conditions. International Journal of Control, 2020, vol. 93, no.7, pp. 1570-1576. DOI: 10.1080/00207179.2018.1519258.

Vigak, V. M., Yasins'kii, A. V., & Yuzvyak, N. I. Optimal control of the heating of thermosensitive canonical bodies with constraints on the stress in the plastic zone. International Applied Mechanics, 1995, vol. 31, no 12, pp. 997-1003. DOI: 10.1007/BF00847259.

Vigak, V. M., & Svirida, M. I. Optimal Control of Two-dimensional Nonaxisymmetric Temperature Field in a Hollow Cylinder with Thermoelastic Stress Restrictions. Intl. Appl. Mech., 1995, vol. 31, pp. 448-454. DOI: 10.1007/BF00846797.

Kushnir, R., & Yasinskyy, A. Control of steady-state thermal displacements and stresses in a plane-strained half space. J. Therm. Stresses, 2018, vol. 41, no. 10-12, pp. 1468–1486. DOI: 10.1080/01495739.2018.1520619.

Gachkevich, O. R., & Gachkevich, M. G. Optimal Heating of a Piecewisehomogeneous Cylindrical Glass Shell by the Surrounding Medium and Heat Sources. J. Math. Sci., 1999, vol. 96, pp. 2935-2939. Available at: https://link.springer.com/article/10.1007/BF02169010 (accessed March 9, 2024).

Chekurin, V. F., & Postolaki, L. I. Application of the variational method of homogeneous solutions for the optimal control of the axisymmetric thermoelastic state of a cylinder. Journal of Mathematical Sciences, 2019, vol. 243, no. 2, pp. 128-144. DOI: 10.1007/s10958-019-04531-3.

Yasinskyy, А. V., & Tokovyy, Y. V. Control of Two-Dimensional Stationary Thermal Stresses in a Half Space with the Help of External Thermal Loading. J. Math. Sci., 2022, vol. 261, pp. 115-126. DOI: 10.1007/s10958-022-05744-9.

Yasinskyy, А. V., & Тokova, L. P. Optimization of the Steady-State Thermal Displacements of a Plane-Deformed Half Space by Means of External Thermal Loading. Journal of Mathematical Sciences, 2021, vol. 254, pp. 59-70. DOI: 10.1007/s10958-021-05288-4.

Kulik, A., Dergachov, K., Pasichnik, S., & Sokol, D. Rational control of the temperature of vortex energy separator under destabilizing influence. Radioelectronic and Computer Systems, 2022, no. 3(103), pp. 47-66. DOI: 10.32620/reks.2022.3.04.

Nikolaev, A. G., & Procenko, V. S. Obobshennyj metod Fure v prostranstvennyh zadachah teorii uprugosti. Monografiya [Generalized Fourier method in spatial problems of the theory of elasticity. Monograph]. Kharkov, National Aerospace University “Kharkiv Aviation Institute, 2011. 344 p. ISBN: 978-966-662-247-4 (In Russian).

Nikolajev, O. G., & Skitska, M. V. Lokaljna modelj termopruzhnogho stanu porystogho materialu [The local model of the thermoelastic state of porous material]. Visnik Nacionalnogo tehnichnogo universitetu «HPI». Seriya: Matematichne modelyuvannya v tehnici ta tehnologiyah- Herald of the National KhPI Technical University. Series: Mathematical modeling in technology and technologies, 2023, no. 1, pp. 161-168. DOI: 10.20998/2222-0631.2023.01.24. (In Ukrainian).




DOI: https://doi.org/10.32620/reks.2024.2.09

Refbacks

  • There are currently no refbacks.