The method of determining optimal control of the thermoelastic state of piece-homogeneous body using a stationary temperature field
Abstract
Keywords
Full Text:
PDFReferences
Sethi, S. P., & Thompson, G. L. Optimal Control Theory: Applications to Management Science and Economics. New York, Springer, 2000. 506 p. DOI: 10.1007/0-387-29903-3.
BendsØe, M. P., & Sigmund, O. Topology Optimization. Theory, Methods and Applications. Berlin, Heidelberg, New York, Springer Verlag, 2003. 370 p. DOI: 10.1007/978-3-662-05086-6.
Lenhart, S., & Workman, J. T. Optimal Control Applied to Biological Models. London, Chapman & Hall/CRC, 2007. 280 p. DOI: 10.1201/9781420011418.
Anita, S., Arnautu, V., & Capasso, V. An Introduction to Optimal Control Problems in Life Sciences and Economics: From Mathematical Models to Numerical Simulation with MATLAB. Birkhäuser, 2010. 244 p. DOI: 10.1007/978-0-8176-8098-5.
Chen, P., & Islam, S. M. N. Optimal Control Models in Finance. Boston, Springer, 2005. 200 p. DOI: 10.1007/b101888.
Boltyanski, V. G., Gamkreldze, R. V., Mish-chenko, E. F., & Pontryagin, L. S. The Maximum Principle in the Theory of Optimal Processes of Control. IFAC Proceedings Volumes, 1960, vol. 1, no. 1, pp. 464 – 469. DOI: 10.1016/S1474-6670(17)70089-4.
Pontryagin, L. S., Boltyanskii, V. G., Gamkre-lidze, R. V., & Mishchenko, E. F. The Mathematical Theory of Optimal Processes. New York: Wiley Interscience, 1962. 360 p. DOI: 10.1002/zamm.19630431023.
Bellman, R. Dynamic programming and a new formalism in the calculus of variations. Proc. Natl. Acad. Sci. USA, 1954, vol. 40, pp. 231-235. DOI: 10.1073/pnas.40.4.231.
Bellman, R. Dynamic Programming. Princeton University Press, 1957. 339 p. Available at: https://gwern.net/doc/statistics/decision/1957-bellman-dynamicprogramming.pdf (accessed March 7, 2024).
Wang, P. K. C. Control distributed parameter systems. Advances in control systems. Theory and applications. Ed. By C.T. Leondes, vol. 1. New York – London: Acad. Press, 1964, pp. 75-172. DOI: 10.1016/B978-1-4831-6717-6.50008-5.
Lions, J. -L. Optimal Control of Systems Governed by Partial Differential Equations. Berlin, Heidelberg, Springer Verlag, 1971. 396 p. Available at: https://link.springer.com/book/9783642650260 (accessed March 7, 2024).
Lions, J. -L., & Stampacchia, G. Variational inequalities. Comm. Pure and Appl. Math, 1967, vol. 20, pp. 493 – 519. DOI: 10.1002/cpa.3160200302.
Fichera, G. Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei, 1964, vol. 8, no. 7, pp. 91-140. Available at: http://www.numdam.org/item/SJL_1966-1967___3_64_0/ (accessed March 9, 2024).
Lure, A. K. The Mayer – Bolza Problem for Multiple Integrals: Some Optimal Problems for Elliptic Differential Equations Arising in Magnetohydrodynamics. In book: Topics in Optimization (ed. By G. Leitmann), New York, London: Academic Press, 1967, pp. 147-197. DOI: 10.1016/S0076-5392(09)60041-2.
Bonnans, J. F., & Casas, E. A boundary Pont-ryagin’s principle for the optimal control of state-constrained elliptic systems. In book: International Series of Numerical Mathematics, vol. 107, 1992, pp. 241-249. Birkhauser Verlag Basel. Available at: https://link.springer.com/chapter/10.1007/978-3-0348-8625-3_22 (accessed March 7, 2024).
Casas, E., & Trӧltzsch, F. First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations. SIAM Journal on Control and Optimization, 2009, vol. 48, no. 2, pp. 688-718. DOI: 10.1137/080720048.
Casas, E., & Trӧltzsch, F. Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations. ESAIM: Control, Optimization and Calculus of Variations, 2011, vol. 17, pp. 771-800. DOI: 10.1051/cocv/2010025.
Ciuperca, I., Talibi, M., & Jai, M. On the optimal control of coefficients in elliptic problems. Application to the optimization of the head slider. ESAIM: Control, Optimization and Calculus of Variations, 2005, vol. 11, pp. 102-121. DOI: 10.1051/cocv:2004029.
Ge, L., Niu, H., & Zhou, J. Convergence Analysis and Error Estimate for Distributed Optimal Control Problems Governed by Stokes Equations with Velocity-Constraint. Adv. Appl. Math. Mech., 2022, vol. 14, no. 1, pp. 33-55. DOI: 10.4208/aamm.OA-2020-0302.
Sergienko, I. V., & Deineka, V. S. Optimal Control of Distributed Systems with Conjugation Conditions. New York: Kluwer Academic Publihers, 2005. 383 p. DOI: 10.1007/b104441.
Allendes, A., Fuica, F., Otarola, E., & Quero, D. A posteriori error estimates for semilinear optimal control problems. ESAIM: M2AN, 2021, vol. 55, pp. 2293–2322. DOI: 10.1051/m2an/2021033.
Becker, R., Kapp, H., & Rannacher, R. Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept. SIAM: Journal on Control and Optimization, 2000, vol. 39, no. 1, pp. 113-132. DOI: 10.1137/S036301299935109.
Farag, M. H. The gradient projection method for solving an optimal control problem. Applicationes mathematicae, 1996, vol. 24, no. 2, pp. 141-147. Available at: http://eudml.org/doc/219158 (accessed March 9, 2024).
Farag, M. H. Computing optimal control with a quasilinear parabolic partial differential equation. Surveys in Mathematics and its Applications, 2009, vol. 4, pp. 139-153. Available at: http://eudml.org/doc/226339 (accessed March 9, 2024).
Arada, N., & Raymond, J.-P. Optimal control problems with mixed control-state constraints. SIAM J. Control Optim.. 2000, vol. 39, no. 5, pp. 1391-1407. DOI: 10.1137/S0363012999357926.
Kenne, C., Djomegne, L. & Zongo, P. Second-order optimality conditions for the bilinear optimal control of a degenerate parabolic equation. arXiv:2212.11046v1 [math.OC], 2022, pp. 1-19. DOI: 10.48550/arXiv.2212.11046.
Thünen, A., Leyffer, S., & Sager, S. State elimination for mixed-integer optimal control of partial differential equations by semigroup theory. Optim Control Appl Meth., 2022, vol. 43, pp. 867-883. DOI: 10.1002/oca.2861.
Alam, T.-M., Nicaise, S., & Paquet, L. An optimal control problem governed by heat equation with nonconvex constraints applied to selective laser melting process. Minimax Theory and its Applications, 2021, vol. 6, no. 2, pp.191-204. Available at: https://hal.science/hal-02302403 (accessed March 9, 2024).
Mazari, I. Existence of optimal shapes in parabolic bilinear optimal control problems. Preprint, 2023, pp. 1-23. Available at: https://hal.science/hal-040022742023 (accessed March 9, 2024).
Pan, L., & Yong, J. Optimal control for quasilinear retarded parabolic systems. ANZIAMJ, 2001, vol. 42, pp. 532-551. DOI: 10.1017/S1446181100012268.
Lou, H. Optimality conditions for semilinear parabolic equations with controls in leading term. ESAIM: COCV, 2011, vol. 17, pp. 975–994. DOI: 10.1051/cocv/2010034.
Vlasenko, L. A., & Samoilenko, A. M. Optimal control with impulsive component for systems described by implicit parabolic operator differential equations. Ukrainian Mathematical Journal, 2009, vol. 61, pp. 1250-1263. DOI: 10.1007/s11253-010-0274-1.
Sergienko, I. V., & Deineka, V. S. Optimal control of the parabolic system and identification of its parameters for the known heat flows. Cybernetics and Systems Analysis, 2014, vol. 50, no. 1, pp. 38-59. DOI: 10.1007/s10559-014-9591-y.
Meriç, R. A. Coupled optimization in steady-state thermoelasticity. Journal of Thermal Stresses, 1985, vol. 8, no. 3, pp. 333-347. DOI: 10.1080/01495738508942240.
Zasadna, K. E. Numerical solution of the problem of optimal control of the heating of a thermoelastic plate by internal heat sources. Journal of Soviet Mathematics, 1993, vol. 63, pp. 70-74. DOI: 10.1007/BF01103085.
Hafdallah, A., & Ayadi, A. Optimal control of a thermoelastic body with missing initial conditions. International Journal of Control, 2020, vol. 93, no.7, pp. 1570-1576. DOI: 10.1080/00207179.2018.1519258.
Vigak, V. M., Yasins'kii, A. V., & Yuzvyak, N. I. Optimal control of the heating of thermosensitive canonical bodies with constraints on the stress in the plastic zone. International Applied Mechanics, 1995, vol. 31, no 12, pp. 997-1003. DOI: 10.1007/BF00847259.
Vigak, V. M., & Svirida, M. I. Optimal Control of Two-dimensional Nonaxisymmetric Temperature Field in a Hollow Cylinder with Thermoelastic Stress Restrictions. Intl. Appl. Mech., 1995, vol. 31, pp. 448-454. DOI: 10.1007/BF00846797.
Kushnir, R., & Yasinskyy, A. Control of steady-state thermal displacements and stresses in a plane-strained half space. J. Therm. Stresses, 2018, vol. 41, no. 10-12, pp. 1468–1486. DOI: 10.1080/01495739.2018.1520619.
Gachkevich, O. R., & Gachkevich, M. G. Optimal Heating of a Piecewisehomogeneous Cylindrical Glass Shell by the Surrounding Medium and Heat Sources. J. Math. Sci., 1999, vol. 96, pp. 2935-2939. Available at: https://link.springer.com/article/10.1007/BF02169010 (accessed March 9, 2024).
Chekurin, V. F., & Postolaki, L. I. Application of the variational method of homogeneous solutions for the optimal control of the axisymmetric thermoelastic state of a cylinder. Journal of Mathematical Sciences, 2019, vol. 243, no. 2, pp. 128-144. DOI: 10.1007/s10958-019-04531-3.
Yasinskyy, А. V., & Tokovyy, Y. V. Control of Two-Dimensional Stationary Thermal Stresses in a Half Space with the Help of External Thermal Loading. J. Math. Sci., 2022, vol. 261, pp. 115-126. DOI: 10.1007/s10958-022-05744-9.
Yasinskyy, А. V., & Тokova, L. P. Optimization of the Steady-State Thermal Displacements of a Plane-Deformed Half Space by Means of External Thermal Loading. Journal of Mathematical Sciences, 2021, vol. 254, pp. 59-70. DOI: 10.1007/s10958-021-05288-4.
Kulik, A., Dergachov, K., Pasichnik, S., & Sokol, D. Rational control of the temperature of vortex energy separator under destabilizing influence. Radioelectronic and Computer Systems, 2022, no. 3(103), pp. 47-66. DOI: 10.32620/reks.2022.3.04.
Nikolaev, A. G., & Procenko, V. S. Obobshennyj metod Fure v prostranstvennyh zadachah teorii uprugosti. Monografiya [Generalized Fourier method in spatial problems of the theory of elasticity. Monograph]. Kharkov, National Aerospace University “Kharkiv Aviation Institute, 2011. 344 p. ISBN: 978-966-662-247-4 (In Russian).
Nikolajev, O. G., & Skitska, M. V. Lokaljna modelj termopruzhnogho stanu porystogho materialu [The local model of the thermoelastic state of porous material]. Visnik Nacionalnogo tehnichnogo universitetu «HPI». Seriya: Matematichne modelyuvannya v tehnici ta tehnologiyah- Herald of the National KhPI Technical University. Series: Mathematical modeling in technology and technologies, 2023, no. 1, pp. 161-168. DOI: 10.20998/2222-0631.2023.01.24. (In Ukrainian).
DOI: https://doi.org/10.32620/reks.2024.2.09
Refbacks
- There are currently no refbacks.