Efficiency energy analysis for 6G communication systems using intelligent reflecting surface architecture

Hubbul Walidainy, Siti Raihan, Ramzi Adriman, Yuwaldi Away, Nasaruddin Nasaruddin

Abstract


The subject of this 6G communication system research is expected to form a hyper-connected network in which various electronic devices can connect continuously without interruption. Several technologies have been built to support 6G communication systems, such as intelligent reflecting surface (IRS). An IRS is a reflector equipped with several two-dimensional passive elements that perform a phase shift by each element, which can reflect electromagnetic (EM) waves coming from the base station (BS) to the user equipment (UE), which is controlled via a controller to increase the signal strength at the UE and overcome poor propagation conditions. IRS can be placed anywhere, such as on a wall or on the roof of a building. The aim of the IRS research is expected to reduce the energy consumption and increase the spectral efficiency of wireless networks using artificial intelligence (AI) with low costs, energy savings, no thermal noise, and fairly small levels of interference. The objective of this research is to evaluate and analyze the energy efficiency (EE), including the achievable rate (AR) and signal-to-noise ratio (SNR), by applying the IRS architecture in a 6G communications system, which uses an operating frequency of 95 GHz and a bandwidth of 800 MHz. Then, the method was based on computer simulation using the Matlab software. In this paper, 6G communication system modeling was proposed. This model uses an urban microcell (Umi) that consists of one base station (BS) with multiple antennas, varying the number of IRS reflecting elements and one user. In this research, AR, SNR, and EE, using the frequency of 95 GHz and simulations with MATLAB@2021a software. The results show that the number of elements as many as 400 is 39% more optimal than the number of elements as many as 40 for the AR results. The SNR results without electromagnetic interference (EMI) are higher than SNR values affected by EMI with SNR results of 100 dBm, and the number of reflecting elements is directly proportional to the SNR results. For 800 elements, the EE value is 26% higher than for 40 elements. Conclusions. The application of IRS in 6G communication systems can increase the AR, SNR, and EE.

Keywords


6G; IRS; EMI; achievable rate; SNR; energy efficiency

Full Text:

PDF

References


Akyildiz, I. F., Kak, A., & Nie, S. 6G and Beyond: The Future of Wireless Communications Systems. IEEE Access, 2020, vol. 8, pp. 133995-134030. DOI: 10.1109/ACCESS.2020.3010896.

Wu, Q., Zhang, S., Zheng, B., You, C., & Zhang, R. Intelligent Reflecting Surface-Aided Wireless Communications: A Tutorial. IEEE Transactions on Communications, 2021, vol. 69, iss. 5, pp. 3313-3351. DOI: 10.1109/TCOMM.2021.3051897.

De Lima, C., Belot, D., Berkvens, R., Bourdoux, A., Dardari, D., Guillaud, M., Isomursu, M., Lohan, E.-S., Miao, Y., Barreto, A.N., Aziz, M.R.K., Saloranta, J., Sanguanpuak, T., Sarieddeen, H., Seco-Granados, G., Suutala, J., Svensson, T., Valkama, M., Van Liempd, B., & Wymeersch, H. Convergent Communication, Sensing and Localization in 6G Systems: An Overview of Technologies, Opportunities and Challenges. IEEE Access, 2021, vol. 9, pp. 26902–26925. DOI: 10.1109/ACCESS.2021.3053486.

Yu, X., Xu, D., & Schober, R. MISO Wireless Communication Systems via Intelligent Reflecting Surfaces. arXiv, Computer Science. Information Theory, 2019. DOI: 10.48550/arXiv.1904.12199.

Serkov, A., Kasilov, O., Lazurenko, B., Pevnev, V., & Trubchaninova, K. Strategy of building a wireless mobile communication system in the conditions of electronic counteraction. Radioelectronic and Computer Systems, 2023, no. 2, pp. 160-170. DOI: 10.32620/reks.2023.2.13.

He, J., Jiang, F., Keykhosravi, K., Kokkoniemi, J., Wymeersch, H., & Juntti, M. Beyond 5G RIS mmWave Systems: Where Communication and Localization Meet. IEEE Access, 2022, vol. 10, pp. 68075-68084. DOI: 10.1109/ACCESS.2022.3186510.

Walidainy, H., Nashirah, N., Adriman, R., Away, Y., & Nasaruddin, N. Statistical channel model for 6G communication networks in Banda Aceh City. Radioelectronic and Computer Systems, 2023, no. 2, pp. 65-80. DOI: 10.32620/reks.2023.2.06.

Salameh, A. I., & El Tarhuni, M. From 5G to 6G—Challenges, Technologies, and Applications. Future Internet, 2022, vol. 14, iss. 4, article no. 117. DOI: 10.3390/fi14040117.

Zhu, Y., Mao, B., & Kato, N. Intelligent Reflecting Surface in 6G Vehicular Communications: A Survey. IEEE Open Journal of Vehicular Technology, 2022, vol. 3, pp. 266-277. DOI: 10.1109/OJVT.2022.3177253.

Jung, J.-S., Park, C.-Y., Oh, J.-H., & Song, H.-K. Intelligent Reflecting Surface for Spectral Efficiency Maximization in the Multi-User MISO Communication Systems. IEEE Access, 2021, vol. 9, pp. 134695-134702. DOI: 10.1109/ACCESS.2021.3116959.

Nadeem, Q.-U.-A., Alwazani, H., Kammoun, A., Chaaban, A., Debbah, M., & Alouini, M.-S. Intelligent Reflecting Surface Assisted Multi-User MISO Communication: Channel Estimation and Beamforming Design. arXiv. Computer Science. Information Theory, 2020. DOI: 10.48550/arXiv.2005.01301.

Sejan, M. A. S., Rahman, M. H., Shin, B.-S., Oh, J.-H., You, Y.-H., & Song, H.-K. Machine Learning for Intelligent-Reflecting-Surface-Based Wireless Communication towards 6G: A Review. Sensors, 2022, vol. 22, iss. 14, article no. 5405. DOI: 10.3390/s22145405.

Wu, Q., & Zhang, R. Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network. IEEE Communications Magazine, 2020, vol. 58, iss. 1, pp. 106-112. DOI: 10.1109/MCOM.001.1900107.

Mohsan, S. A. H., Khan, M. A., Alsharif, M. H., Uthansakul, P., & Solyman, A. A. A. Intelligent Reflecting Surfaces Assisted UAV Communications for Massive Networks: Current Trends, Challenges, and Research Directions. Sensors, 2022, vol. 22, iss. 14, article no. 5278. DOI: 10.3390/s22145278.

Costa, F., & Borgese, M. Electromagnetic Model of Reflective Intelligent Surfaces. IEEE Open Journal of the Communications Society, 2021, vol. 2, pp. 1577-1589. DOI: 10.1109/OJCOMS.2021.3092217.

Singh, K., Saikia, M., Thiyagarajan, K., Thalakotuna, D., Esselle, K., & Kodagoda, S. Multi-Functional Reconfigurable Intelligent Surfaces For Enhanced Sensing and Communication. Sensors, 2023, vol. 23, article no. 8561. DOI: 10.20944/preprints202309.0443.v1.

Björnson, E., Wymeersch, H., Matthiesen, B., Popovski, P., Sanguinetti, L., & de Carvalho, E. Reconfigurable Intelligent Surfaces: A Signal Processing Perspective With Wireless Applications. IEEE Signal Processing Magazine, 2022, vol. 39, iss. 2, pp. 135-158. DOI: 10.1109/MSP.2021.3130549.

Abeywickrama, S., Zhang, R., & Yuen, C. (2020) Intelligent Reflecting Surface: Practical Phase Shift Model and Beamforming Optimization. arXiv. Electrical Engineering and Systems Science. Signal Processing, 2020. DOI: 10.48550/arXiv.1907.06002.

Pérez-Adán, D., Fresnedo, Ó., González-Coma, J. P., & Castedo, L. Intelligent Reflective Surfaces for Wireless Networks: An Overview of Applications, Approached Issues, and Open Problems. Electronics, 2021, vol. 10, iss. 19, article no. 2345. DOI: 10.3390/electronics10192345.

Luo, X., & Meratnia, N. A Codeword-Independent Localization Technique for Reconfigurable Intelligent Surface Enhanced Environments Using Adversarial Learning. Sensors, 2023, vol. 23, iss. 2, article no. 984. DOI: 10.3390/s23020984.

Zhang, Z., & Dai, L. Reconfigurable Intelligent Surfaces for 6G: Nine Fundamental Issues and One Critical Problem. Tsinghua Science and Technology, 2023, vol. 28, iss. 5, pp. 929-939. DOI: 10.26599/TST.2023.9010001.

Rajak, S., Muniraj, I., Elumalai, K., Hosen, A. S. M. S., Ra, I.-H., & Chinnadurai, S. Energy Efficient Hybrid Relay-IRS-Aided Wireless IoT Network for 6G Communications. Electronics, 2022, vol. 11, iss. 12, article no. 1900. DOI: 10.3390/electronics11121900.

Björnson, E., Özdogan, Ö., & Larsson, E. G. Intelligent Reflecting Surface vs. Decode-and-Forward: How Large Surfaces Are Needed to Beat Relaying? IEEE Wireless Communications Letters, 2020, vol. 9, iss. 2, pp. 244-248. DOI: 10.1109/LWC.2019.2950624.

Torres, A. D. J., Sanguinetti, L., & Björnson, E. Electromagnetic Interference in RIS-Aided Communications. arXiv. Electrical Engineering and Systems Science > Signal Processing, 2021. DOI: 10.48550/arXiv.2106.11107.

Wang, X.-Y., Liao, S.-Y., Wan, Y.-J., Zhu, P.-L., Hu, Y.-G., Zhao, T., Sun, R., & Wong, C.-P. Electromagnetic Interference Shielding Materials: Recent Progress, Structure Design, and Future Perspective. Journal of Materials Chemistry C, 2022, vol. 10, iss. 1, pp. 44-72. DOI: 10.1039/D1TC04702G.

Björnson, E., & Larsson, E. G. How Energy-Efficient Can a Wireless Communication System Become? arXiv. Computer Science. Information Theory, 2019. DOI: 10.48550/arXiv.1812.01688.

Tripathi, S., Sabu, N. V., Gupta, A. K., & Dhillon, H. S. Millimeter-wave and Terahertz Spectrum for 6G Wireless. arXiv. Computer Science. Information Theory, 2021. DOI: 10.48550/arXiv.2102.10267.

MacCartney, G. R., Yan, H., Sun, S., & Rappaport, T. S. A flexible wideband millimeter-wave channel sounder with local area and NLOS to LOS transition measurements. IEEE International Conference on Communications (ICC). ICC 2017, Paris, France, pp. 1-7. DOI: 10.1109/ICC.2017.7996791.

Yuan, X., Zhang, Y.-J.A., Shi, Y., Yan, W., & Liu, H. Reconfigurable-Intelligent-Surface Empowered Wireless Communications: Challenges and Opportunities. arXiv. Computer Science. Information Theory, 2020. DOI: 10.48550/arXiv.2001.00364.

Khaleel, A., & Basar, E. Electromagnetic Interference Cancellation for RIS-Assisted Communications. IEEE Communications Letters, 2023, vol. 27, iss. 8, pp. 2192-2196. DOI: 10.1109/LCOMM.2023.3280131.

Dupuis, M., & Gilfian, F. Decisions on the Frequency Bands 71-76 GHz, 81-86 GHz and 92-95 GHz. Ottawa – Ontario, Industry Canada Publ., 2012. 11 p. Available at: https://publications.gc.ca/collections/collection_2013/ic/Iu64-46-5-2012-eng.pdf. (accessed 12 Feb 2024).




DOI: https://doi.org/10.32620/reks.2024.2.07

Refbacks

  • There are currently no refbacks.