Military logistics planning models for enemy targets attack by a swarm of combat drones
Abstract
Keywords
Full Text:
PDFReferences
Lv, H., Liu, F., & Yuan, N.-C. Drone Presence Detection by the Drone’s RF Communication. Journal of Physics: Conference Series, 2021, vol. 1738, article no. 012044. DOI: 10.1088/1742-6596/1738/1/012044.
Huynh-The, T., Pham, Q.-V., Nguyen, T.-V., Costa, D. B. D., & Kim, D.-S. RF-UAVNet: High-Performance Convolutional Network for RF-based Drone Surveillance Systems. IEEE Access, 2022, vol. 10, pp. 49696-49707. DOI: 10.1109/ACCESS.2022.3172787.
Soto, M., Nava, P., & Alvarado, L. Drone Formation Control System Real-Time Path Planning. AIAA Infotech@Aerospace 2007 Conference and Exhibit, 2007, 7 - 10 May 2007, Rohnert Park, California. DOI: 10.2514/6.2007-2770.
Guo, J., Wang, L., & Wang, X. A Group Maintenance Method of Drone Swarm Considering System Mission Reliability. Drones, 2022, vol. 6, iss. 10, article no. 269. DOI: 10.3390/drones6100269.
Pohudina, O., Bykov, A., Kritskiy, D., & Kovalevskyi, M. The Method of Flight Mission Formation for a Group Autonomous Flight of Unmanned Aerial Vehicles. Integrated Computer Technologies in Mechanical Engineering - 2021. ICTM 2021. Lecture Notes in Networks and Systems, Springer, Cham, 2022, vol. 367, pp. 894-901. DOI: 10.1007/978-3-030-94259-5_69.
Kritsky, D. N., Ovsiannik, V. M., Pogudina, O. K., Shevel, V. V., & Druzhinin, E. A. Model for intercepting targets by the unmanned aerial vehicle. Mathematical Modeling and Simulation of Systems. MODS 2019. Advances in Intelligent Systems and Computing, Springer, Cham, 2020, vol. 1019, pp. 197-206. DOI: 10.1007/978-3-030-25741-5_20.
Morge-Rollet, L., Le Jeune, D., Le Roy, F., Canaff, C., & Gautier, R. Drone Detection and Classification Using Physical-Layer Protocol Statistical Fingerprint. Sensors, 2022, vol. 22, iss. 17, article no. 6701. DOI: 10.3390/s22176701.
Chao, Y., Augenstein, P., Roennau, A., Dillmann, R., & Xiong, Z. Brain inspired path planning algorithms for drones. Front. Neurorobot, 2023, vol. 17, article no. 1111861. DOI: 10.3389/fnbot.2023.1111861.
Yu, R., Liu, Y., Meng, Y., Guo, Y., Xiong, Z., & Jiang, P. Optimal Configuration of Heterogeneous Swarm for Cooperative Detection with Minimum DOP Based on Nested Cones. Drones, 2024, vol. 8, iss. 1, article no. 11. DOI: 10.3390/drones8010011.
Yang, Y., Xiong, X., & Yan, Y. UAV Formation Trajectory Planning Algorithms: A Review. Drones, 2023, vol. 7, iss. 1, article no. 62. https://doi.org/10.3390/drones7010062.
Counter-Unmanned Aircraft System (CUAS) Capability for Battalion-and-Below Operations. National Academies of Sciences, Engineering, and Medicine, 2018. Abbreviated Version of a Restricted Report. Washington, DC: The National Academies Press. 48 p. DOI: 10.17226/24747.
Oh, B. S., & Lin, Z. Extraction of Global and Local m-DS features from FMCW Radar Returns for UAV Detection. IEEE Transactions on Aerospace and Electronic Systems, 2021, vol. 57, iss. 2, pp. 1351-1360. DOI: 10.1109/TAES.2020.3034020.
Siemiatkowska, B., & Stecz, W. A Framework for Planning and Execution of Drone Swarm Missions in a Hostile Environment. Sensors, 2021, vol. 21, iss. 12, article no. 4150. DOI: 10.3390/s21124150.
Balamurugan, G., Valarmathi, J., & Naidu, V. P. S. Survey on UAV navigation in GPS denied environments. 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), 2016, pp. 198–204. DOI: 10.1109/SCOPES.2016.7955787.
Fedorovich, O., Lukhanin, M., Prokhorov, O., Slomchynskyi, O., Hubka, O., & Leshchenko, Yu. Simulation of arms distribution strategies by combat zones to create military parity of forces. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2023, no. 4, pp. 209-220. DOI: 10.32620/reks.2023.4.15.
Grimal, F., & Sundaram, J. Combat Drones: Hives, Swarms, and Autonomous Action? Journal of Conflict and Security Law, 2018, vol. 23, iss. 1, pp. 105-135. DOI: 10.1093/jcsl/kry008.
Zuo, M., Xie, S., Zhang, X. & Yang, M. Recognition of UAV Video Signal Using RF Fingerprints in the Presence of WiFi Interference. IEEE Access, 2021, vol. 9, pp. 88844-88851. DOI: 10.1109/ACCESS.2021.3089590.
Lee, H., Han, S., Byeon, J.-II, Han, S., Myung, R., Joung, J. & Choi, J. CNN-Based UAV Detection and Classification Using Sensor Fusion. IEEE Access, 2023, vol. 11, pp. 68791-68808. DOI: 10.1109/ACCESS.2023.3293124.
Konert, A., & Balcerzak, T. Military autonomous drones (UAVs) – from fantasy to reality. Legal and Ethical implications. Transportation Research Procedia, 2021, vol. 59, pp. 292-299. DOI: 10.1016/j.trpro.2021.11.121.
Merkert, R., & Bushell, J. Managing the drone revolution: A systematic literature review into the current use of airborne drones and future strategic directions for their effective control. Journal of Air Transport Management, 2020, vol. 89, article no. 101929, DOI: 10.1016/j.jairtraman.2020.101929.
Csengeri, J. Counter-drone activity as a system. International scientific journal “Security & Future”, 2019, vol. 3, iss. 1, pp. 31-34. Available at: https://stumejournals.com/journals/confsec/2019/1/31 (accessed 11.03.2023).
Coluccia, A., Parisi, G., & Fascista, A. Detection and Classification of Multirotor Drones in Radar Sensor Networks: A Review. Sensors, 2020, vol. 20, iss. 15, article no. 4172. DOI: 10.3390/s20154172.
Rejeb, A., Rejeb, K., Simske, S. J., & Treiblmaier, H. Drones for supply chain management and logistics: a review and research agenda. International Journal of Logistics Research and Applications, 2023, vol. 26, iss. 6, pp. 708-731, DOI: 10.1080/13675567.2021.1981273.
Yaacoub, J.-P., Noura, H., Salman, O., & Chehab, A. Security analysis of drones systems: Attacks, limitations, and recommendations. Internet of Things, 2020, vol. 11, article no. 100218. DOI: 10.1016/j.iot.2020.100218.
Martins, B. O., Michel, A. H., & Silkoset, A. Countering the Drone Threat Implications of C-UAS technology for Norway in an EU and NATO context. Peace Research Institute Oslo (PRIO) Publ., 2020. 40 p. Available at: https://www.prio.org/publications/12245 (accessed 11.03.2023).
Kunertova, D. Drones have boots: Learning from Russia’s war in Ukraine. Contemporary Security Policy, 2023, vol. 44, iss. 4, pp. 576-591. DOI: 10.1080/13523260.2023.2262792.
Petrovski, A., Radovanović, M., & Behlic, A. Application of drones with artificial intelligence for military purposes. 10th International Scientific Conference on Defensive Technologies (OTEH 2022), Belgrade, Serbia, 13-14 October 2022, pp. 92-100. Available at: https://www.researchgate.net/publication/364324778_APPLICATION_OF_DRONES_WITH_ARTIFICIAL_INTELLIGENCE_FOR_MILITARY_PURPOSES (accessed 11.03.2023).
Lee, D., Kim, D., & Suk, J. Formation flight of unmanned aerial vehicles using track guidance. Aerospace Science and Technology, 2018, vol. 76, pp. 412-420. DOI: 10.1016/j.ast.2018.01.026.
Sun, H., Qi, J., Wu, C., & Wang, M. Path Planning for Dense Drone Formation Based on Modified Artificial Potential Fields. 39th Chinese Control Conference (CCC), Shenyang, China, 2020, pp. 4658-4664. DOI: 10.23919/CCC50068.2020.9189345.
Chen, Y., & Deng, T. Leader-Follower UAV formation flight control based on feature modelling. Systems Science & Control Engineering, 2023, vol. 11, iss. 1, article no. 2268153. DOI: 10.1080/21642583.2023.2268153.
Solaiman, S., Alsuwat, E., & Alharthi, R. Simultaneous Tracking and Recognizing Drone Targets with Millimeter-Wave Radar and Convolutional Neural Network. Applied System Innovation, 2023, vol. 6, iss. 4, article no. 68. DOI: 10.3390/asi6040068.
DOI: https://doi.org/10.32620/reks.2024.1.16
Refbacks
- There are currently no refbacks.