A novel anomaly detection model for the industrial Internet of Things using machine learning techniques

Lahcen Idouglid, Said Tkatek, Khalid Elfayq, Azidine Guezzaz

Abstract


In recent decades, the pervasive integration of the Internet of Things (IoT) technologies has revolutionized various sectors, including industry 4.0, telecommunications, cloud computing, and healthcare systems. Industry 4.0 applications, characterized by real-time data exchange, increased reliance on automation, and limited computational resources at the edge, have reshaped global business dynamics, aiming to innovate business models through enhanced automation technologies. However, ensuring security in these environments remains a critical challenge, with real-time data streams introducing vulnerabilities to zero-day attacks and limited resources at the edge demanding efficient intrusion detection solutions. This study addresses this pressing need by proposing a novel intrusion detection model (IDS) specifically designed for Industry 4.0 environments.  The proposed IDS leverages a Random Forest classifier with Principal Component Analysis (PCA) for feature selection. This approach addresses the challenges of real-time data processing and resource limitations while offering high accuracy. Based on the Bot-IoT dataset, the model achieves a competitive accuracy of 98.9% and a detection rate of 97.8%, outperforming conventional methods. This study demonstrates the effectiveness of the proposed IDS for securing Industry 4.0 ecosystems, offering valuable contributions to the field of cybersecurity.

Keywords


Industry 4.0 Security; IIoT; IoT; Anomaly Detection; Feature Selection; Random Forest

Full Text:

PDF

References


Azrour, M., Mabrouki, J., & Chaganti, R. New Efficient and Secured Authentication Protocol for Remote Healthcare Systems in Cloud-IoT. Security and Communication Networks, 2021, vol. 2021, article no. 5546334, pp. 1-12. DOI: 10.1155/2021/5546334.

Čolaković, A., & Hadžialić, M. Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Computer Networks, 2018, vol. 144, pp. 17-39. DOI: 10.1016/j.comnet.2018.07.017.

Batool, T., Abbas, S., Alhwaiti, Y., Saleem, M., Ahmad, M., Asif, M., & Elmitwally, N. S. Intelligent Model of Ecosystem for Smart Cities Using Artificial Neural Networks. Intelligent Automation & Soft Computing, 2021, vol. 30, iss. 2, pp. 513-525. DOI: 10.32604/iasc.2021.018770.

Tkatek, S., Belmzoukia, A., Nafai, S., Abouchabaka, J., & Ibnou-ratib, Y. Putting the world back to work: An expert system using big data and artificial intelligence in combating the spread of COVID-19 and similar contagious diseases. Work, 2020, vol. 67, iss. 3, pp. 557-572. DOI: 10.3233/WOR-203309.

King, J., & Awad, A. I. A Distributed Security Mechanism for Resource-Constrained IoT Devices. Informatica, 2016, vol. 40, iss. 1, pp. 133-143. Available at: https://www.informatica.si/index.php/informatica/article/view/1046 (accessed 12/12/2023)

Yao, H., Gao, P., Zhang, P., Wang, J., Jiang, C., & Lu, L. Hybrid Intrusion Detection System for Edge-Based IIoT Relying on Machine-Learning-Aided Detection. IEEE Network, 2019, vol. 33, iss. 5, pp. 75-81. DOI: 10.1109/MNET.001.1800479.

Azrour, M., Mabrouki, J., Guezzaz, A., & Kanwal, A. Internet of Things Security: Challenges and Key Issues. Security and Communication Networks, 2021, vol. 2021, article no. 5533843, pp. 1-11. DOI: 10.1155/2021/5533843.

Chanal, P. M., Kakkasageri, M. S. Security and Privacy in IoT: A Survey. Wireless Personal Communications, 2020, vol. 115, pp. 1667-1693. DOI: 10.1007/s11277-020-07649-9.

Yu, X., & Guo, H. A Survey on IIoT Security. 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS), Singapore, 2019, pp. 1-5. DOI: 10.1109/VTS-APWCS.2019.8851679.

Idhammad, M., Afdel, K., & Belouch, M. Semi-supervised machine learning approach for DDoS detection. Applied Intelligence, 2018, vol. 48, pp. 3193-3208. DOI: 10.1007/s10489-018-1141-2.

Yan, Q., Huang, W., Luo, X., Gong, Q., & Yu, F. R. A Multi-Level DDoS Mitigation Framework for the Industrial Internet of Things. IEEE Communications Magazine, 2018, vol. 56, iss. 2, pp. 30-36. DOI: 10.1109/MCOM.2018.1700621.

Malik, P. K., Sharma, R., Singh, R., Gehlot, A., Satapathy, S. C., Alnumay, W. S., Pelusi, D., Ghosh, U., & Nayak, J. Industrial Internet of Things and its Applications in Industry 4.0: State of The Art. Computer Communications, 2021, vol. 166, pp. 125-139. DOI: 10.1016/j.comcom.2020.11.016.

Buczak, A. L., & Guven, E. A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys & Tutorials, 2016, vol. 18, iss. 2, pp. 1153-1176. DOI: 10.1109/COMST.2015.2494502.

Guezzaz, A., Azrour, M., Benkirane. S., Mohy-Eddine, M., Attou, H., & Douiba, M. A Lightweight Hybrid Intrusion Detection Framework using Machine Learning for Edge-Based IIoT Security. The International Arab Journal of Information Technology, 2022, vol. 19, iss. 5, 822-830. DOI: 10.34028/iajit/19/5/14.

Alanazi, M., & Aljuhani, A. Anomaly Detection for Internet of Things Cyberattacks. Computers, Materials & Continua, 2022, vol. 72, iss. 1, pp. 261-279. DOI: 10.32604/cmc.2022.024496.

Guezzaz, A., Asimi, A., Sadqi, Y., Asimi, Y., & Tbatou, Z. A New Hybrid Network Sniffer Model Based on Pcap Language and Sockets (Pcapsocks). International Journal of Advanced Computer Science and Applications, 2016, vol. 7, iss. 2. DOI: 10.14569/IJACSA.2016.070228.

Guezzaz, A., Benkirane, S., Azrour, M., & Khurram, S. A Reliable Network Intrusion Detection Approach Using Decision Tree with Enhanced Data Quality. Security and Communication Networks, 2021, vol. 2021, pp. 1-8. DOI: 10.1155/2021/1230593.

Verma, A., & Ranga, V. Machine Learning Based Intrusion Detection Systems for IoT Applications. Wireless Personal Communications, 2020, vol. 111, iss. 4, pp. 2287-2310. DOI: 10.1007/s11277-019-06986-8.

Bagaa, M., Taleb, T., Bernabe, J. B., & Skarmeta, A. A Machine Learning Security Framework for Iot Systems. IEEE Access, 2020, vol. 8, pp. 114066-114077. DOI: 10.1109/ACCESS.2020.2996214.

Sai Kiran, K. V. V. N. L., Devisetty, R. N. K., Kalyan, N. P., Mukundini, K., & Karthi, R. Building a Intrusion Detection System for IoT Environment using Machine Learning Techniques. Procedia Computer Science, 2020, vol. 171, pp. 2372-2379. DOI: 10.1016/j.procs.2020.04.257.

Dovbysh, A. S., Shelekhov, I. V., Khibovsʹka, Yu. O., & Matyash, O, V. Informatsiyno-analitychna systema otsinyuvannya vidpovidnosti suchasnym vymoham navchalʹnoho kontentu spetsialʹnosti kiberbezpeka [Information and analytical system for assessing the compliance of educational content specialties ciber security with modern requirements]. Radioelectronic and Computer Systems, 2021, no. 1, pp. 70-80. DOI: 10.32620/reks.2021.1.06. (In Ukrainian)

Dovbysh A, Liubchak V, Shelehov I, Simonovskiy J, Tenytska A. Information-extreme machine learning of a cyber attack detection system. Radioelectronic and Computer Systems, 2022, no. 3, pp. 121-131. DOI: 10.32620/reks.2022.3.09.

Bobrovnikova, K., Lysenko, S., Savenko, B., Gaj, P., & Savenko, O. Technique for IoT malware detection based on control flow graph analysis. Radioelectronic and Computer Systems, 2022, no. 1, pp. 141-153. DOI: 10.32620/reks.2022.1.11.

Lazzarini, R., Tianfield, H., & Charissis, V. Federated Learning for IoT Intrusion Detection. AI, 2023, vol. 4, iss. 3, pp. 509-530. DOI: 10.3390/ai4030028.

Musleh, D., Alotaibi, M., Alhaidari, F., Rahman, A., & Mohammad, R. M. Intrusion Detection System Using Feature Extraction with Machine Learning Algorithms in IoT. J. Sens. Actuator Netw., 2023, vol. 12, iss. 2, article no. 29. DOI: 10.3390/jsan12020029

Al Amien, J., Ab Ghani, H., Md Saleh, N. I., Ismanto, E., & Gunawan, R. Intrusion detection system for imbalance ratio class using weighted XGBoost classifier. TELKOMNIKA (Telecommunication Computing Electronics and Control), 2023, vol. 21, iss. 5, article no. 1102. DOI: 10.12928/telkomnika.v21i5.24735.

Cutler, A., Cutler, D. R., & Stevens, J. R. Random Forests. In: Zhang C, Ma Y, editors. Ensemble Machine Learning, New York, NY: Springer New York; 2012, pp. 157-175. DOI: 10.1007/978-1-4419-9326-7_5.

Yeung, K. Y., & Ruzzo, W. L. Principal component analysis for clustering gene expression data. Bioinformatics, 2001, vol. 17, iss. 9, pp. 763-774. DOI: 10.1093/bioinformatics/17.9.763.

Kramer, O. K-Nearest Neighbors. Dimensionality Reduction with Unsupervised Nearest Neighbors. Intelligent Systems Reference Library, vol. 51, Berlin, Heidelberg: Springer Berlin Heidelberg; 2013, pp. 13-23. DOI: 10.1007/978-3-642-38652-7_2.

Brodley, C. E., & Utgoff, P. E. Multivariate Decision Trees. Machine Learning, 1995, vol. 19, iss. 1, pp. 45-77. DOI: 10.1023/A:1022607123649.




DOI: https://doi.org/10.32620/reks.2024.1.12

Refbacks

  • There are currently no refbacks.