A novel anomaly detection model for the industrial Internet of Things using machine learning techniques
Abstract
Keywords
Full Text:
PDFReferences
Azrour, M., Mabrouki, J., & Chaganti, R. New Efficient and Secured Authentication Protocol for Remote Healthcare Systems in Cloud-IoT. Security and Communication Networks, 2021, vol. 2021, article no. 5546334, pp. 1-12. DOI: 10.1155/2021/5546334.
Čolaković, A., & Hadžialić, M. Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Computer Networks, 2018, vol. 144, pp. 17-39. DOI: 10.1016/j.comnet.2018.07.017.
Batool, T., Abbas, S., Alhwaiti, Y., Saleem, M., Ahmad, M., Asif, M., & Elmitwally, N. S. Intelligent Model of Ecosystem for Smart Cities Using Artificial Neural Networks. Intelligent Automation & Soft Computing, 2021, vol. 30, iss. 2, pp. 513-525. DOI: 10.32604/iasc.2021.018770.
Tkatek, S., Belmzoukia, A., Nafai, S., Abouchabaka, J., & Ibnou-ratib, Y. Putting the world back to work: An expert system using big data and artificial intelligence in combating the spread of COVID-19 and similar contagious diseases. Work, 2020, vol. 67, iss. 3, pp. 557-572. DOI: 10.3233/WOR-203309.
King, J., & Awad, A. I. A Distributed Security Mechanism for Resource-Constrained IoT Devices. Informatica, 2016, vol. 40, iss. 1, pp. 133-143. Available at: https://www.informatica.si/index.php/informatica/article/view/1046 (accessed 12/12/2023)
Yao, H., Gao, P., Zhang, P., Wang, J., Jiang, C., & Lu, L. Hybrid Intrusion Detection System for Edge-Based IIoT Relying on Machine-Learning-Aided Detection. IEEE Network, 2019, vol. 33, iss. 5, pp. 75-81. DOI: 10.1109/MNET.001.1800479.
Azrour, M., Mabrouki, J., Guezzaz, A., & Kanwal, A. Internet of Things Security: Challenges and Key Issues. Security and Communication Networks, 2021, vol. 2021, article no. 5533843, pp. 1-11. DOI: 10.1155/2021/5533843.
Chanal, P. M., Kakkasageri, M. S. Security and Privacy in IoT: A Survey. Wireless Personal Communications, 2020, vol. 115, pp. 1667-1693. DOI: 10.1007/s11277-020-07649-9.
Yu, X., & Guo, H. A Survey on IIoT Security. 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS), Singapore, 2019, pp. 1-5. DOI: 10.1109/VTS-APWCS.2019.8851679.
Idhammad, M., Afdel, K., & Belouch, M. Semi-supervised machine learning approach for DDoS detection. Applied Intelligence, 2018, vol. 48, pp. 3193-3208. DOI: 10.1007/s10489-018-1141-2.
Yan, Q., Huang, W., Luo, X., Gong, Q., & Yu, F. R. A Multi-Level DDoS Mitigation Framework for the Industrial Internet of Things. IEEE Communications Magazine, 2018, vol. 56, iss. 2, pp. 30-36. DOI: 10.1109/MCOM.2018.1700621.
Malik, P. K., Sharma, R., Singh, R., Gehlot, A., Satapathy, S. C., Alnumay, W. S., Pelusi, D., Ghosh, U., & Nayak, J. Industrial Internet of Things and its Applications in Industry 4.0: State of The Art. Computer Communications, 2021, vol. 166, pp. 125-139. DOI: 10.1016/j.comcom.2020.11.016.
Buczak, A. L., & Guven, E. A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys & Tutorials, 2016, vol. 18, iss. 2, pp. 1153-1176. DOI: 10.1109/COMST.2015.2494502.
Guezzaz, A., Azrour, M., Benkirane. S., Mohy-Eddine, M., Attou, H., & Douiba, M. A Lightweight Hybrid Intrusion Detection Framework using Machine Learning for Edge-Based IIoT Security. The International Arab Journal of Information Technology, 2022, vol. 19, iss. 5, 822-830. DOI: 10.34028/iajit/19/5/14.
Alanazi, M., & Aljuhani, A. Anomaly Detection for Internet of Things Cyberattacks. Computers, Materials & Continua, 2022, vol. 72, iss. 1, pp. 261-279. DOI: 10.32604/cmc.2022.024496.
Guezzaz, A., Asimi, A., Sadqi, Y., Asimi, Y., & Tbatou, Z. A New Hybrid Network Sniffer Model Based on Pcap Language and Sockets (Pcapsocks). International Journal of Advanced Computer Science and Applications, 2016, vol. 7, iss. 2. DOI: 10.14569/IJACSA.2016.070228.
Guezzaz, A., Benkirane, S., Azrour, M., & Khurram, S. A Reliable Network Intrusion Detection Approach Using Decision Tree with Enhanced Data Quality. Security and Communication Networks, 2021, vol. 2021, pp. 1-8. DOI: 10.1155/2021/1230593.
Verma, A., & Ranga, V. Machine Learning Based Intrusion Detection Systems for IoT Applications. Wireless Personal Communications, 2020, vol. 111, iss. 4, pp. 2287-2310. DOI: 10.1007/s11277-019-06986-8.
Bagaa, M., Taleb, T., Bernabe, J. B., & Skarmeta, A. A Machine Learning Security Framework for Iot Systems. IEEE Access, 2020, vol. 8, pp. 114066-114077. DOI: 10.1109/ACCESS.2020.2996214.
Sai Kiran, K. V. V. N. L., Devisetty, R. N. K., Kalyan, N. P., Mukundini, K., & Karthi, R. Building a Intrusion Detection System for IoT Environment using Machine Learning Techniques. Procedia Computer Science, 2020, vol. 171, pp. 2372-2379. DOI: 10.1016/j.procs.2020.04.257.
Dovbysh, A. S., Shelekhov, I. V., Khibovsʹka, Yu. O., & Matyash, O, V. Informatsiyno-analitychna systema otsinyuvannya vidpovidnosti suchasnym vymoham navchalʹnoho kontentu spetsialʹnosti kiberbezpeka [Information and analytical system for assessing the compliance of educational content specialties ciber security with modern requirements]. Radioelectronic and Computer Systems, 2021, no. 1, pp. 70-80. DOI: 10.32620/reks.2021.1.06. (In Ukrainian)
Dovbysh A, Liubchak V, Shelehov I, Simonovskiy J, Tenytska A. Information-extreme machine learning of a cyber attack detection system. Radioelectronic and Computer Systems, 2022, no. 3, pp. 121-131. DOI: 10.32620/reks.2022.3.09.
Bobrovnikova, K., Lysenko, S., Savenko, B., Gaj, P., & Savenko, O. Technique for IoT malware detection based on control flow graph analysis. Radioelectronic and Computer Systems, 2022, no. 1, pp. 141-153. DOI: 10.32620/reks.2022.1.11.
Lazzarini, R., Tianfield, H., & Charissis, V. Federated Learning for IoT Intrusion Detection. AI, 2023, vol. 4, iss. 3, pp. 509-530. DOI: 10.3390/ai4030028.
Musleh, D., Alotaibi, M., Alhaidari, F., Rahman, A., & Mohammad, R. M. Intrusion Detection System Using Feature Extraction with Machine Learning Algorithms in IoT. J. Sens. Actuator Netw., 2023, vol. 12, iss. 2, article no. 29. DOI: 10.3390/jsan12020029
Al Amien, J., Ab Ghani, H., Md Saleh, N. I., Ismanto, E., & Gunawan, R. Intrusion detection system for imbalance ratio class using weighted XGBoost classifier. TELKOMNIKA (Telecommunication Computing Electronics and Control), 2023, vol. 21, iss. 5, article no. 1102. DOI: 10.12928/telkomnika.v21i5.24735.
Cutler, A., Cutler, D. R., & Stevens, J. R. Random Forests. In: Zhang C, Ma Y, editors. Ensemble Machine Learning, New York, NY: Springer New York; 2012, pp. 157-175. DOI: 10.1007/978-1-4419-9326-7_5.
Yeung, K. Y., & Ruzzo, W. L. Principal component analysis for clustering gene expression data. Bioinformatics, 2001, vol. 17, iss. 9, pp. 763-774. DOI: 10.1093/bioinformatics/17.9.763.
Kramer, O. K-Nearest Neighbors. Dimensionality Reduction with Unsupervised Nearest Neighbors. Intelligent Systems Reference Library, vol. 51, Berlin, Heidelberg: Springer Berlin Heidelberg; 2013, pp. 13-23. DOI: 10.1007/978-3-642-38652-7_2.
Brodley, C. E., & Utgoff, P. E. Multivariate Decision Trees. Machine Learning, 1995, vol. 19, iss. 1, pp. 45-77. DOI: 10.1023/A:1022607123649.
DOI: https://doi.org/10.32620/reks.2024.1.12
Refbacks
- There are currently no refbacks.