Advanced approach for Moroccan administrative documents digitization using pre-trained models CNN-based: character recognition
Abstract
Keywords
Full Text:
PDFReferences
Geron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. 2nd edition, O'Reilly Media, Inc., 2019. 856 p. ISBN: 978-1492032649.
Thorat, C., Bhat, A., Sawant, P., Bartakke, I., & Shirsath, S. A Detailed Review on Text Extraction Using Optical Character Recognition. In: FONG, S., DEY, N. & JOSHI, A., eds. ICT Analysis and Applications, Lecture Notes in Networks and Systems, 2022, vol. 314, Singapore: Springer Nature Singapore, pp. 719-728. DOI: 10.1007/978-981-16-5655-2_69.
Radwan, M. A., Khalil, M. I., & Abbas, H. M. Neural Networks Pipeline for Offline Machine Printed Arabic OCR. Neural Processing Letters. 2018, vol. 48, no. 2, pp. 769-787. DOI: 10.1007/s11063-017-9727-y.
Gong, Y., Yang, J., & Shi, X. Towards a comprehensive understanding of digital transformation in government: Analysis of flexibility and enterprise architecture. Government Information Quarterly. 2020, vol. 37, no. 3, article no. 101487. DOI: 10.1016/j.giq.2020.101487.
Kadhim, A. I. Survey on supervised machine learning techniques for automatic text classification. Artificial Intelligence Review. 2019, vol. 52, no. 1, pp. 273-292. DOI: 10.1007/s10462-018-09677-1.
Sen, P. C., Hajra, M., & Ghosh, M. Supervised Classification Algorithms in Machine Learning: A Survey and Review. In: MANDAL, J. K. & BHATTACHARYA, D., eds. Emerging Technology in Modelling and Graphics. Advances in Intelligent Systems and Computing, 2020, vol. 937, Singapore: Springer Singapore, pp. 99-111. DOI: 10.1007/978-981-13-7403-6_11.
Khan, A., Laghari, A., & Awan, S. Machine Learning in Computer Vision: A Review. ICST Transactions on Scalable Information Systems, 2021, iss. 32, aricle no. e4. DOI: 10.4108/eai.21-4-2021.169418.
Chukhray, A., Chernenko, M., Stoliarenko, T., & Leshchenko, O. Diagnostic support of intelligent tutor system for teaching skills to construct control object frequency characteristics. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2022, no. 3, pp. 190-199. DOI: 10.32620/reks.2022.3.14.
Oumoulylte, M., Omari Alaoui, A., Farhaoui, Y., El Allaoui, A., & Bahri, A. Convolutional neural network-based skin cancer classification with transfer learning models. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2023, no. 4, pp. 75-87. DOI: 10.32620/reks.2023.4.07.
Hosen, M. A., Moz, S. H., Khalid, M. M. H., Kabir, S. S., & Galib, D. S. M. Face recognition-based attendance system with anti-spoofing, system alert, and email automation. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2023, no. 2, pp. 119-128. DOI: 10.32620/reks.2023.2.10.
Cob-Parro, A. C., Losada-Gutiérrez, C., Marrón-Romera, M., Gardel-Vicente, A., & Bravo-Muñoz, I. A new framework for deep learning video based Human Action Recognition on the edge. Expert Systems with Applications, 2024, vol. 238, article no. 122220. DOI: 10.1016/j.eswa.2023.122220.
Dovbysh, A., Liubchak, V., Shelehov, I., Simonovskiy, J., & Tenytska, A. Information-extreme machine learning of a cyber attack detection system. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2022, no. 3, pp. 121-131. DOI: 10.32620/reks.2022.3.09.
Islam, M. M., Hossain, M. B., Akhtar, M. N., Moni, M. A. & Hasan, K. F. CNN Based on Transfer Learning Models Using Data Augmentation and Transformation for Detection of Concrete Crack. Algorithms, 2022, vol. 15, no. 8, article no. 287. DOI: 10.3390/a15080287.
Liu, Y., Wang, Y., & Shi, H. A Convolutional Recurrent Neural-Network-Based Machine Learning for Scene Text Recognition Application. Symmetry, 2023, vol. 15, no. 4, article no. 849. DOI: 10.3390/sym15040849.
Han, X., Zhang, Z., Ding, N., Gu, Y., Liu, X., Huo, Y., Qiu, J., Yao, Y., Zhang, A., Zhang, L., Han, W., Huang, M., Jin, Q., Lan, Y., Liu, Y., Liu, Z., Lu, Z., Qiu, X., Song, R., Tang, J., Wen, J.-R., Yuan, J., Zhao, W. X., & Zhu, J. Pre-trained models: Past, present and future. AI Open, 2021, vol. 2, pp. 225-250. DOI: 10.1016/j.aiopen.2021.08.002.
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G. & Isard, M. TensorFlow: A System for Large-Scale Machine Learning. OSDI'16: Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation, November 2016, pp. 265–283.
Hinton, G. E., Osindero, S., & Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, vol. 18, no. 7, pp. 1527–1554. DOI: 10.1162/neco.2006.18.7.1527.
Pham, V., Bluche, T., Kermorvant, C., & Louradour, J. Dropout Improves Recurrent Neural Networks for Handwriting Recognition. 14th International Conference on Frontiers in Handwriting Recognition, 2014, pp. 285-290. DOI: 10.1109/ICFHR.2014.55.
Benaissa, A., Bahri, A., & Allaoui, A. E. Characters Type Recognition In Moroccan Documents Using CNN. 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), 2022, pp. 1-7. DOI: 10.1109/IRASET52964.2022.9738376.
AlJarrah, M. N., Zyout, M. M., & Duwairi, R. Arabic Handwritten Characters Recognition Using Convolutional Neural Network. 12th International Conference on Information and Communication Systems (ICICS), 2021, pp. 182-188. DOI: 10.1109/ICICS52457.2021.9464596.
Hazra, T. K., Singh, D. P., & Daga, N. Optical character recognition using KNN on custom image dataset. 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON), 2017, pp. 110-114. DOI: 10.1109/IEMECON.2017.8079572.
Prashanth, D. S., Mehta, R. V. K., & Sharma, N. Classification of Handwritten Devanagari Number – An analysis of Pattern Recognition Tool using Neural Network and CNN. Procedia Computer Science. 2020, vol. 167, pp. 2445-2457. DOI: 10.1016/j.procs.2020.03.297.
Albattah, W., & Albahli, S. Intelligent Arabic Handwriting Recognition Using Different Standalone and Hybrid CNN Architectures. Applied Sciences, 2022, vol. 12, iss. 19, article no. 10155. DOI: 10.3390/app121910155.
Luo, C., Li, X., Wang, L., He, J., Li, D., & Zhou, J. How Does the Data set Affect CNN-based Image Classification Performance? 5th International Conference on Systems and Informatics (ICSAI), 2018, pp. 361-366. DOI: 10.1109/ICSAI.2018.8599448.
Benaissa, A., Bahri, A., & El Allaoui, A. Multilingual character recognition dataset for Moroccan official documents. Data in Brief., 2024, vol. 52, article no. 109953. DOI: 10.1016/j.dib.2023.109953.
Kingma, D. P., & Ba, J. Adam: A Method for Stochastic Optimization. CoRR., 2014, vol. abs/1412.6980. DOI: 10.48550/arXiv.1412.6980.
Sashank, Kale, S., & Kumar, S. On the Convergence of Adam and Beyond. arXiv pre-print server, 2019. DOI: 10.48550/arXiv.1904.09237.
Prashanth, D. S., Mehta, R. V. K., Ramana, K., & Bhaskar, V. Handwritten Devanagari Character Recognition Using Modified Lenet and Alexnet Convolution Neural Networks. Wireless Personal Communications, 2022, vol. 122, no. 1, pp. 349-378. DOI: 10.1007/s11277-021-08903-4.
Hamdan, Y. B., & Sathish. Construction of Statistical SVM based Recognition Model for Handwritten Character Recognition. Journal of Information Technology and Digital World, 2021, vol. 3, no. 2, pp. 92-107. DOI: 10.36548/jitdw.2021.2.003.
DOI: https://doi.org/10.32620/reks.2024.1.02
Refbacks
- There are currently no refbacks.