Post-processing of compressed noisy images using BM3D filter

Volodymyr Rebrov, Vladimir Lukin

Abstract


Acquired images are often noisy. Since the amount of such images increases, they should be compressed where lossy compression is often applied for several reasons. Such compression is associated with the phenomena of specific image filtering due to lossy compression and the possible existence of an optimal operation point (OOP). However, such filtering is not perfect, and residual noise can be quite intensive even if an image is compressed at the so-called optimal operation point. Then, additional post-filtering can be applied. Thus, the basic subject of this paper is the post-processing of noisy images compressed in a lossy manner. The main goal of this paper is to consider the possible application of a block-matching 3-dimensional (BM3D) filter to images corrupted by additive white Gaussian noise compressed by a better portable graphics (BPG) coder with a compression ratio smaller than that for the optimal operation point and in OOP neighborhood. The tasks of this paper are to analyze the efficiency of compressed image post-processing depending on noise intensity, image complexity, coder compression parameter Q, and filter threshold parameter β according to different quality metrics and to provide practical recommendations on setting the filter and coder parameters. The main result is that the post-processing efficiency decreases when the coder compression parameter increases and becomes negligible for a coder compression parameter slightly larger than its value for OOP. The post-processing efficiency is larger for simpler structure images and larger noise intensity. Compressed image quality due to post-processing improves according to the standard criterion peak signal-to-noise ratio and visual quality metrics. For larger coder compression parameters, the optimal threshold shifts toward smaller values. In conclusion, we demonstrate the efficiency of post-processing and show that the BM3D filter outperforms the standard discrete cosine-based (DCT) filter. We also provide recommendations for filter parameter setting. We also outline possible research directions for the future.

Keywords


lossy compression; noisy images; coders; quality metrics; post-filtering

Full Text:

PDF

References


Kussul, N., Lavreniuk, M., Shelestov, A., & Skakun, S. Crop inventory at regional scale in Ukraine: Developing in season and end of season crop maps with multi-temporal optical and SAR satellite imagery. European Journal of Remote Sensing, 2018, vol. 51, no. 1, pp. 627-636. DOI: 10.1080/22797254.2018.1454265.

Fang, J., Mao, T., Bo, F., Hao, B., Zhang, N., Hu, S., Lu, W., & Wang, X. A SAR Image-Despeckling Method Based on HOSVD Using Tensor Patches. Remote Sensing, 2023, vol. 15, article no. 3118. DOI: 10.3390/rs15123118.

Ma, Y., Wu, H., Wang, L., Huang, B., Ranjan, R., Zomaya, A., & Jie, W. Remote sensing big data computing: Challenges and opportunities. Future Generation Computer Systems, 2015, vol. 51, pp. 47-60. DOI: 10.1016/j.future.2014.10.029.

Lan, Y., & Zhang, X. Real-Time Ultrasound Image Despeckling Using Mixed-Attention Mechanism Based Residual UNet. IEEE Access, 2020, vol. 8, pp. 195327-195340. DOI: 10.1109/ACCESS.2020.3034230.

Heo, Y.-C., Kim, K., & Lee, Y. Image Denoising Using Non-Local Means (NLM) Approach in Magnetic Resonance (MR) Imaging: A Systematic Review. Applied Sciences, 2020, vol. 10, article no. 7028. DOI: 10.3390/app10207028.

Ponomarenko, M., Miroshnichenko, O., Lukin, V., Kryvenko, S., & Egiazarian, K. Blind denoising of dental X-Ray images. Proceedings of SPIE EI Symposium, 2023, vol. 35, pp. 299-1-299-6. DOI: 10.2352/EI.2023.35.9.IPAS-299.

Bataeva, E., & Chumakova-Sierova, A. Values in visual practices of Instagram network users. Lecture Notes in Networks and Systems, 2022, vol. 367, pp. 992-1002. DOI: 10.1007/978-3-030-94259-5_76

Hussain, A. J., Al-Fayadh, A., & Radi, N. Image compression techniques: A survey in lossless and lossy algorithms. Neurocomputing, 2018, vol. 300, pp. 44-69. DOI: 10.1016/j.neucom.2018.02.094.

Sayood, K. Introduction to data compression. San Francisco, Morgan Kaufmann Publ., 2017. 680 p. Available at: https://www.mbit.edu.in/wp-content/uploads/2020/05/data_compression.pdf (accessed 10.07.2023).

Blanes, I., Magli, E., & Serra-Sagrista, J. A tutorial on image compression for optical space imaging Systems. IEEE Geoscience and Remote Sensing Magazine, 2014, vol. 2, no. 3, pp. 8-26, DOI: 10.1109/MGRS.2014.2352465.

Bondžulić, B., Stojanović, N., Petrović, V., Pavlović, B., & Miličević, Z. Efficient prediction of the first just noticeable difference point for JPEG compressed images. Acta Polytechnica Hungarica, 2021, vol. 18, no. 8, pp. 201-220. DOI: 10.12700/APH.18.8.2021.8.11.

Li, F., Krivenko, S., & Lukin, V. Two-step providing of desired quality in lossy image compression by SPIHT. Radioelectronic and computer systems, 2020, no. 2, pp. 22-32. DOI: 10.32620/reks.2020.2.02.

Jeong, Y. W., Yang, J. Y., Jung, Y. B., Jeon, B. W., Cha, S. H., Kang, S. J., & Dinh, Q. K. Rate distortion optimization encoding system and method of operating the same. Patent US, no. 10,742,995 B2. 2020. Available at: https://patents.justia.com/patent/10742995 (accessed 10.07.2023).

Oh, H., Bilgin, A., & Marcellin, M. Visually lossless JPEG 2000 for remote image browsing. Information, 2016, vol. 7, no. 3, article no. 45. DOI: 10.3390/info7030045.

Zabala, A., Pons, X., Díaz-Delgado, R., Garcia, F., Auli-Llinas, F., & Serra-Sagrista, J. Effects of JPEG and JPEG2000 lossy compression on remote sensing image classification for mapping crops and forest areas. Proceedings of 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 2006, pp. 790-793. DOI: 10.1109/IGARSS.2006.203.

Ozah, N., & Kolokolova, A. Compression improves image classification accuracy. Advances in Artificial Intelligence. Canadian AI 2019. Lecture Notes in Computer Science, vol. 11489, Springer, Cham., 2019, pp. 525-530. DOI: 10.1007/978-3-030-18305-9_55.

Doss, S., Pal, S., Akila, D., Jeyalaksshmi, S., Nusrat Jabeen, T., & Suseendran, G. Satellite image remote sensing for identifying aircraft using SPIHT and NSCT. Journal of Critical Reviews, 2020, vol. 7, no. 5, pp. 631-634. Available at: https://jcreview.com/paper.php?slug=satellite-image-remote-sensing-for-identifying-aircraft-using-spiht-and-nsct (accessed 10.07.2023).

Lim, S. H. Characterization of Noise in Digital Photographs for Image Processing. Proceeding in Digital Photography II, 2008, vol. 6069, pp. 219-228. DOI: 10.1117/12.655915.

Chatterjee, P., & Milanfar, P. Is Denoising Dead? IEEE Transactions on Image Processing, 2010, vol. 19, no. 4, pp. 895-911. DOI: 10.1109/TIP.2009.2037087.

Al-Chaykh, O. K., & Mersereau, R. M. Lossy compression of noisy images. IEEE Transactions on Image Processing, 1998, vol. 7, iss. 12, pp. 1641-1652. DOI: 10.1109/83.730376.

Chang, S. G., Yu, B., & Vetterli, M. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. on Image Processing, 2000, vol. 9, iss. 9, pp. 1532-1546. DOI: 10.1109/83.862633.

Yang, D., Lv, W., Zhang, J., Chen, H., Sun, X., Lv, S., Dai, X., Luo, R., Zhou, W., Qiu, J., & Shi, Y. Low-dose imaging denoising with one pair of noisy images. Optics Express, 2023, vol. 31, iss. 9, article no. 14159. DOI: 10.1364/OE.482856.

Kovalenko, B., Lukin, V., Kryvenko, S., Naumenko, V., & Vozel, B. BPG-Based Automatic Lossy Compression of Noisy Images with the Prediction of an Optimal Operation Existence and Its Parameters. Applied Sciences, 2022, vol. 12, iss. 15, article no. 7555. DOI: 10.3390/app12157555.

Kovalenko, B., Lukin, V., & Rebrov, V. Analysis of the potential efficiency of post-filtering noisy images after lossy compression. Ukrainian journal of remote sensing, 2023, vol. 10, no. 1, pp. 11-16. DOI: 10.36023/ujrs.2023.10.1.231.

Chen, X., Liu, L., Zhang, J., & Shao, W. Infrared image denoising based on the variance-stabilizing transform and the dual-domain filter. Digital Signal Processing, 2021, vol. 113, article no. 103012. DOI: 10.1016/j.dsp.2021.103012.

Fevralev, D., Lukin, V., Ponomarenko, N., Abramov, S., Egiazarian, K., & Astola, J. Efficiency analysis of DCT-based filters for color image database. SPIE Conference Image Processing: Algorithms and Systems IX, 2011. vol. 7870. DOI: 10.1117/12.871944.

Bellard, F. BPG Image format. Release 0.9.8. Available at: https://bellard.org/bpg/. (accessed 10.07.2023).

Lebrun, M. An Analysis and Implementation of the BM3D Image Denoising Method. Image Processing On Line, 2012, vol. 2, pp. 175–213. DOI: 10.5201/ipol.2012.l-bm3d.

Colom, M., Buades, A., & Morel, J.-M. Nonparametric noise estimation method for raw images. Journal of the Optical Society of America A, 2014, vol. 31, no. 4, pp. 863-871. DOI: 10.1364/JOSAA.31.000863.

Selva, E., Kountouris, A., & Louet, Y. K-Means Based Blind Noise Variance Estimation. IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 2021, pp. 1-7. DOI: 10.1109/VTC2021-Spring51267.2021.9449072.

Bekhtin, Y. S. Adaptive wavelet codec for noisy image compression, 9th East-West Design & Test Symposium (EWDTS), Sevastopol, Ukraine, 2011, pp. 184-188. DOI: 10.1109/EWDTS.2011.6116587.

Simmer, K. U., Bitzer, J., & Marro, C. Post-Filtering Techniques. In: Brandstein, M., Ward, D. (eds) Microphone Arrays. Digital Signal Processing, Springer, Berlin, Heidelberg, 2001, pp. 39-60. DOI: 10.1007/978-3-662-04619-7_3.

Rubel, O., Lukin, V., Krivenko, S., Pavlikov, V., Zhyla, S., & Tserne, E. Reduction of Spatially Correlated Speckle in Textured SAR Images. International Journal of Computing, 2021, vol. 20, no. 3, pp. 319-327. DOI: 10.47839/ijc.20.3.2276.

Lin, W., & Jay Kuo, C.-C. Perceptual visual quality metrics: A survey. Journal of Visual Communication and Image Representation, 2011, vol. 22, iss. 4, pp. 297-312. DOI: 10.1016/j.jvcir.2011.01.005.

Kim, C., & Milanfar, P. Visual saliency in noisy images. Journal of Vision, 2013, vol. 13, no. 4, article no. 5, pp. 1-14. DOI: 10.1167/13.4.5.

Lukin, V., Bataeva, E., & Abramov, S. Saliency map in image visual quality assessment and processing. Radioelectronic and computer systems, 2023, no. 1, pp. 112-121. DOI: 10.32620/reks.2023.1.09.




DOI: https://doi.org/10.32620/reks.2023.4.09

Refbacks

  • There are currently no refbacks.