Ensemble machine learning approaches for fake news classification
Abstract
Keywords
Full Text:
PDFReferences
Vraga, E. K., & Bode, L. Defining Misinformation and Understanding its Bounded Nature: Using Expertise and Evidence for Describing Misinformation. Political Communication, 2020, vol. 37, iss. 1, pp.136–144. DOI: 10.1080/10584609.2020.1716500.
Ó Fathaigh, R., Helberger, N., & Appelman, N. The perils of legally defining disinformation. Internet Policy Review, 2021, vol. 10, iss. 4. 26 p. DOI: 10.14763/2021.4.1584.
van der Linden, S. Misinformation: susceptibility, spread, and interventions to immunize the public. Nature Medicine, 2022, vol. 28, iss. 3, pp. 460-467. DOI: 10.1038/s41591-022-01713-6.
Lazer, D. M. J., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Metzger, M. J., Nyhan, B., Pennycook, G., Rothschild, D., Schudson, M., Sloman, S. A., Sunstein, C. R., Thorson, E. A., Watts, D. J., & Zittrain, J. L. The Science of Fake News. Science, 2018, vol. 359, iss. 6380, pp. 1094-1096. DOI: 10.1126/science.aao2998.
Zakharchenko, A., Peráček, T., Fedushko, S., Syerov, Y., & Trach, O. When Fact-Checking and ‘BBC Standards’ Are Helpless: ‘Fake Newsworthy Event’ Manipulation and the Reaction of the ‘High-Quality Media’ on It. Sustainability, 2021, vol. 13, iss. 2, article no. 573. DOI: 10.3390/su13020573.
Pennycook, G., & Rand, D. G. The psychology of fake news. Trends in Cognitive Sciences, 2021, vol. 25, iss. 5, pp. 388-402. DOI: 10.1016/j.tics.2021.02.007.
Kim, B., Xiong, A., Lee, D., & Han, K. A systematic review on fake news research through the lens of news creation and consumption: Research efforts, challenges, and future directions. PLOS ONE, 2021, vol. 16, iss. 12, article no. e0260080. DOI: 10.1371/journal.pone.0260080.
Thompson, R. C., Joseph, S., & Adeliyi, T. T. A Systematic Literature Review and Meta-Analysis of Studies on Online Fake News Detection. Information, 2022, vol. 13, iss. 11, article no. 527. DOI: 10.3390/info13110527.
Santos, F. C. C. Artificial Intelligence in Automated Detection of Disinformation: A Thematic Analysis. Journalism and Media, 2023, vol. 4, iss. 2, pp. 679-687. DOI: 10.3390/journalmedia4020043.
Wawrzynski, T. Artificial intelligence and cyberculture. Radioelectronic And Computer Systems, 2020, no. 3, pp. 20-26. DOI: 10.32620/reks.2020.3.02.
Badi, H., Badi, I., Moutaouakil, K. E., Khamjane, A., & Bahri, A. Sentiment analysis and prediction of polarity vaccines based on Twitter data using deep NLP techniques. Radioelectronic and Computer Systems, 2022, no. 4, pp. 19-29. DOI: 10.32620/reks.2022.4.02.
Lai, C.-M., Chen, M.-H., Kristiani, E., Verma, V. K., & Yang, C.-T. Fake News Classification Based on Content Level Features. Applied Sciences, 2022, vol. 12, iss. 3, article no. 1116. DOI: 10.3390/app12031116.
Kumar, S., & Arora, B. A Review of Fake News Detection Using Machine Learning Techniques. 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), 2021, pp. 1-8. DOI: 10.1109/ICESC51422.2021.9532796.
Capuano, N., Fenza, G., Loia, V., & Nota, F. D. Content-Based Fake News Detection With Machine and Deep Learning: a Systematic Review. Neurocomputing, 2023, vol. 530, pp. 91-103. DOI: 10.1016/j.neucom.2023.02.005.
Babaiev, V. M., Kadykova, I. M., Husieva, Yu. Yu., & Chumachenko, I. V. The method of adaptation of a project-oriented organization’s strategy to exogenous changes. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2017, vol. 2, pp. 134-140.
Yakovlev, S., Bazilevych, K., Chumachenko, D., Chumachenko, T., Hulianytskyi, L., Meniailov, I., & Tkachenko, A. The Concept of Developing a Decision Support System for the Epidemic Morbidity Control. CEUR Workshop Proceedings, 2020, vol. 2753, pp. 265-274.
Akram, H., & Shahzad, K. Ensembling Machine Learning Models for Urdu Fake News Detection. CEUR Workshop Proceedings, 2022, vol. 3159, pp. 1142-1149.
Tian, Z., & Baskiyar, S. Fake News Detection using Machine Learning with Feature Selection. Proceedings of the 2021 6th International Conference on Computing, Communication and Security, ICCCS 2021, 2021, pp. 1-6. DOI: 10.1109/ICCCS51487.2021.9776346.
Choudhury, D., & Acharjee, T. A novel approach to fake news detection in social networks using genetic algorithm applying machine learning classifiers. Multimedia Tools and Applications, 2022, vol. 82, iss. 6. DOI: 10.1007/s11042-022-12788-1.
Fahad, N., Goh, K.-S., Hossen, I., Shopnil, K. M. S., Mitu, I. J., Alif, A., & Connie, T. Stand up Against Bad Intended News: An Approach to Detect Fake News using Machine Learning. Emerging science journal, 2023, vol. 7, iss. 4, pp. 1247-1259. DOI: 10.28991/esj-2023-07-04-015.
Park, M., & Chai, S. Constructing a User-Centered Fake News Detection Model by Using Classification Algorithms in Machine Learning Techniques. IEEE Access, 2023, vol. 11, pp. 71517-71527. DOI: 10.1109/ACCESS.2023.3294613.
Salh, D., & Nabi, R. M. Kurdish Fake News Detection Based on Machine Learning Approaches. Passer journal of basic and applied sciences, 2023, vol. 5, iss. 2, pp. 262-271. DOI: 10.24271/psr.2023.380132.1226.
Kumar Dutta, A., Qureshi, B., Albagory, Y., Alsanea, M., Al Faraj, M., & Rahaman Wahab Sait, A. Optimal Weighted Extreme Learning Machine for Cybersecurity Fake News Classification. Computer Systems Science and Engineering, 2023, vol. 44, iss. 3, pp. 2395-2409. DOI: 10.32604/csse.2023.027502.
Tohabar, Md. Y., Nasrah, N., & Samir, A. M. Bengali Fake News Detection Using Machine Learning and Effectiveness of Sentiment as a Feature. 2021 Joint 10th International Conference on Informatics, Electronics & Vision (ICIEV) and 2021 5th International Conference on Imaging, Vision & Pattern Recognition (icIVPR) 2021. DOI: 10.1109/icievicivpr52578.2021.9564138.
Fifita, F., Smith, J., Hanzsek-Brill, M. B., Li, X., & Zhou, M. Machine Learning-Based Identifications of COVID-19 Fake News Using Biomedical Information Extraction. Big Data and Cognitive Computing, 2023, vol. 7, iss. 1, article no. 46. DOI: 10.3390/bdcc7010046.
Yousif, S. A., & Jehad, R. Classification of Covid-19 fake news using machine learning algorithms. AIP Conference Proceedings, 2022, vol. 2483, iss. 1, article no. 070007. DOI: 10.1063/5.0117133.
Verma, P. K., Agrawal, P., Amorim, I., & Prodan, R. WELFake: Word Embedding Over Linguistic Features for Fake News Detection. IEEE Transactions on Computational Social Systems, 2021, vol. 8, iss. 4, pp. 881-893. DOI: 10.1109/tcss.2021.3068519.
Agusta, Z. P., & Adiwijaya, A. Modified balanced random forest for improving imbalanced data prediction. International Journal of Advances in Intelligent Informatics, 2019, vol. 5, iss. 1, pp. 58-65. DOI: 10.26555/ijain.v5i1.255.
Chen, T., & Guestrin, C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’16, 2016, pp. 785-794. DOI: 10.1145/2939672.2939785.
Natekin, A., & Knoll, A. Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 2013, vol. 7, article no. 21. DOI: 10.3389/fnbot.2013.00021.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 3149-3157.
Optuna - A hyperparameter optimization framework. Optuna, 2023. Available at: https://optuna.org (Accessed 26 Apr. 2023).
Gupta, A., Batla, A., Kumar, C., & Jain, G. Comparative Analysis of Machine Learning Models for Fake News Classification. 3rd International Conference on Intelligent Technologies (CONIT), 2023, pp. 1-5. DOI: 10.1109/CONIT59222.2023.10205870.
Kausar, N., AliKhan, A., & Sattar, M. Towards better representation learning using hybrid deep learning model for fake news detection. Social Network Analysis and Mining, 2022, vol. 12, iss. 1. DOI: 10.1007/s13278-022-00986-6.
DOI: https://doi.org/10.32620/reks.2023.4.01
Refbacks
- There are currently no refbacks.