Consistency issue and related trade-offs in distributed replicated systems and databases: a review
Abstract
Keywords
Full Text:
PDFReferences
Ormandjieva, O., Omidbakhsh, M. & Trudel, S. Measuring the 3V's of Big Data: A Rigorous Approach. Int. Workshop on Software Measurement (IWSM) and Conference on Software Process and Product Measurement (IWSM-MENSURA), 2020. Available at: www.iwsm-mensura.org/wp-content/uploads/2020/10/paper5.pdf (accessed Jan. 17, 2023).
Brewer, E. Towards Robust Distributed Systems. ACM Symposium on Principles of Distributed Computing, 2000. DOI: 10.1145/343477.343502.
Gilbert, S. & Lynch, N. Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web Services. ACM SIGACT News, 2002, vol. 33, no. 2, pp. 51-59. DOI: 10.1145/564585.564601
Abadi, D. Consistency Tradeoffs in Modern Distributed Database System Design. IEEE Computer, 2012, vol. 45, no. 2, pp. 37-42. DOI: 10.1109/MC.2012.33
Gorbenko, A. & Romanovsky, A. Time-outing Internet Services. IEEE Security & Privacy, 2013, vol. 11, no. 2, pp. 68-71. DOI: 10.1109/MSP.2013.43
Gorbenko, A., Romanovsky, A. & Tarasyuk, O. Fault tolerant internet computing: Benchmarking and modelling trade-offs between availability, latency and consistency. J. Netw. Comput. Appl., 2019, vol. 146, p. 102412. DOI: 10.1016/j.jnca.2019.102412.
Alagappan, R., Ganesan, A., Patel, Y., Pillai, T. S., Arpaci-Dusseau A. C. & Arpaci-Dusseau, R. H. Correlated Crash Vulnerabilities. USENIX Symposium on Operating Systems Design and Implementation, 2016. Available at: www.usenix.org/system/files/conference/osdi16/osdi16-alagappan.pdf (accessed Jan. 17, 2023).
Abbas, Q., Shafiq, H., Ahmad, I. & Tharanidharan, S. Concurrency control in distributed database system. Int. Conf. on Computer Communication and Informatics (ICCCI), 2016, pp. 1–4. DOI: 10.1109/ICCCI.2016.7479987.
S. Kalid, S., Syed, A., Mohammad, A. & Halgamuge M. N. Big-data NoSQL databases: A comparison and analysis of Big-Table, DynamoDB, and Cassandra. IEEE 2nd Int. Conf. on Big Data Analysis (ICBDA), 2017, pp. 89–93. DOI: 10.1109/ICBDA.2017.8078782.
Anusha, K., Rajesh, N., Kavitha, M. & Ravinder, N. Comparative Study of MongoDB vs Cassandra in big data analytics. 5th Int. Conf. on Computing Methodologies and Communication (ICCMC), 2021, pp. 1831–1835. DOI: 10.1109/ICCMC51019.2021.9418441.
Sandhu, A. K., Big Data with Cloud Computing: Discussions and Challenges. Big Data Mining and Analytics, 2022, vol. 5, iss. 1, pp. 32-40. DOI: 10.26599/BDMA.2021.9020016
Pramukantoro, E. S., Kartikasari, D. P. & Siregar, R. A. Performance Evaluation of MongoDB, Cassandra, and HBase for Heterogenous IoT Data Storage. Int. Conf. on Applied Information Technology and Innovation (ICAITI), 2019, pp. 203-206. DOI:10.1109/ICAITI48442.2019.8982159
Iurian, C.-M., Ivanciu, I.-A. & Dobrota, V. Couchbase Server in Microsoft Azure Cloud: A Docker Container Approach. International Symposium on Electronics and Telecommunications (ISETC), 2020, pp. 1–4. DOI: 10.1109/ISETC50328.2020.9301052.
Araujo, J. M. A., de Moura, A. C. E., da Silva, S. L. B., Holanda, M., Ribeiro, E. de O. & da Silva, G. L. Comparative Performance Analysis of NoSQL Cassandra and MongoDB Databases. 16th Iberian Conference on Information Systems and Technologies (CISTI), 2021, pp. 1–6. DOI: 10.23919/CISTI52073.2021.9476319.
Misaki, M., Tsuda, T., Inoue, S., Sato, S., Kayahara, A. & Imai, S.-I. Distributed Database and Application Architecture for Big Data Solutions. IEEE Trans. Semicond. Manuf., 2017, vol. 30, no. 4, pp. 328–332. DOI: 10.1109/TSM.2017.2750183.
Naik, N. Comprehending Concurrency and Consistency in Distributed Systems. IEEE International Symposium on Systems Engineering (ISSE), 2021, pp. 1–6. DOI: 10.1109/ISSE51541.2021.9582518.
Gomes, B., Borba, E., Tavares, E. & Junior, M. N. de O. Performability Model for Assessing NoSQL DBMS Consistency. IEEE International Systems Conference (SysCon), 2019, pp. 1–6. DOI: 10.1109/SYSCON.2019.8836757.
Gorbenko, A., Karpenko, A. & Tarasyuk, O., Analysis of Trade-offs in Fault-Tolerant Distributed Computing and Replicated Databases. IEEE 11th Int. Conf. on Dependable Systems, Services and Technologies (DESSERT), 2020, pp. 1–6. DOI: 10.1109/DESSERT50317.2020.9125078.
Ductor S. & Guessoum, Z. A coordination mechanism to replicate large-scale multi-agent systems. Int. Conf. on Software Engineering for Adaptive and Self-Managing Systems, 2018, pp. 130–136. DOI: 10.1145/3194133.3194154.
Gilbert S. & Lynch, N. Perspectives on the CAP Theorem. Computer, 2012, vol. 45, no. 2, pp. 30–36.vDOI: 10.1109/MC.2011.389.
Muñoz-Escoí, F. D., de Juan-Marín, R., García-Escrivá, J.-R., González de Mendívil, J. R. & Bernabéu-Aubán, J. M. CAP Theorem: Revision of Its Related Consistency Models. Comput. J., 2019, vol. 62, no. 6, pp. 943–960. DOI: 10.1093/comjnl/bxy142.
Xhafa, F., Naranjo, V., Barolli, L. & Takizawa, M. On Streaming Consistency of Big Data Stream Processing in Heterogenous Clutsers. 18th Int. Conf. on Network-Based Information Systems, 2015, pp. 476–482. DOI: 10.1109/NBiS.2015.122.
Huang, X., Wang, J., Yu, P. S., Bai, J. & Zhang, J. An experimental study on tuning the consistency of NoSQL systems: An Experimental Study on Tuning the Consistency of NoSQL Systems. Concurr. Comput. Pract. Exp., 2017, vol. 29, no. 12, article no. e4129. DOI: 10.1002/cpe.4129.
Tomforde S. & Gruhl, C. Fairness, Performance, and Robustness: Is There a CAP Theorem for Self-adaptive and Self-organising Systems? IEEE Int. Conf. on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C), 2020, pp. 54–59. DOI: 10.1109/ACSOS-C51401.2020.00029.
Gorbenko, A. & Tarasyuk, O. Exploring Timeout as a Performance and Availability Factor of Distributed Replicated Database Systems. Radioelectron. Comput. Syst., 2020, no. 4, pp. 98–105. DOI: 10.32620/reks.2020.4.09.
Kumar, S. P., Lefebvre, S., Chiky, R. & Soudan, E. G. Evaluating consistency on the fly using YCSB. International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), 2014, pp. 1–6. DOI: 10.1109/IWCIM.2014.7008801.
Vyas, K. & Jat, P. M. Study of Consistency and Performance Trade-Off in Cassandra. Computer Science & Technology, 2022, vol. 12, no. 19, pp. 61-77. DOI: 10.5121/csit.2022.121907.
Kim, B. H., Oh, S. & Lie, D. Consistency Oracles: Towards an Interactive and Flexible Consistency Model Specification. 16th Workshop on Hot Topics in Operating Systems, 2017, pp. 82–87. DOI: 10.1145/3102980.3102994.
Hutchison, B., Kepner, J., Gadepally, V. & Howe, B. From NoSQL Accumulo to NewSQL Graphulo: Design and utility of graph algorithms inside a BigTable database. IEEE High Performance Extreme Computing Conference (HPEC), 2016, pp. 1–9. DOI: 10.1109/HPEC.2016.7761577.
Cao, C., Wang, W., Zhang, Y. & Ma, X. Leveraging Column Family to Improve Multidimensional Query Performance in HBase. IEEE 10th Int. Conf. on Cloud Computing (CLOUD), 2017, pp. 106–113. DOI: 10.1109/CLOUD.2017.22.
Sun, B., Zhang, G. & Gao, S. Data Management across Geographically Distributed Autonomous Systems: Architecture, Implementation, and Performance Evaluation. IEEE Int. Conf. on High Performance Computing and Communications; (HPCC), 2019, pp. 2284–2292. DOI: 10.1109/HPCC/SmartCity/DSS.2019.00317.
Ductor, S. & Guessoum, Z. A coordination mechanism to replicate large-scale multi-agent systems. 13th Int. Conf. on Software Engineering for Adaptive and Self-Managing Systems, 2018, pp. 130–136. DOI: 10.1145/3194133.3194154.
Zhao X. & Haller, P. Replicated data types that unify eventual consistency and observable atomic consistency. J. Log. Algebr. Methods Program., 2020, vol. 114, article no. 100561. DOI: 10.1016/j.jlamp.2020.100561.
Fetai, I., Stiemer, A. & Schuldt, H. QuAD: A quorum protocol for adaptive data management in the cloud. IEEE Int. Conf. on Big Data (Big Data), 2017, pp. 405–414. DOI: 10.1109/BigData.2017.8257952.
Pankowski, T. Consistency and Availability of Data in Replicated NoSQL Databases. 10th Int. Conf. on Evaluation of Novel Approaches to Software Engineering, 2015, pp. 102–109. DOI: 10.5220/0005368101020109.
Gu, S., Wang, Y., Wang, Y., Zhang, Q. & Qin, X. Grouping-Based Consistency Protocol Design for End-Edge-Cloud Hierarchical Storage System. IEEE Access, 2020, vol. 8, pp. 8959–8973, DOI: 10.1109/ACCESS.2020.2964626.
Hsu, T.-Y., Kshemkalyani, A. D. & Shen, M. Causal consistency algorithms for partially replicated and fully replicated systems. Future Gener. Comput. Syst., 2018, vol. 86, pp. 1118–1133. DOI: 10.1016/j.future.2017.04.044.
Fouto, P., Leitao, J. & Preguica, N. Practical and Fast Causal Consistent Partial Geo-Replication. IEEE 17th International Symposium on Network Computing and Applications (NCA), 2018, pp. 1–10. DOI: 10.1109/NCA.2018.8548067.
Maneas, S., Chondros, N., Diamantopoulos, P., Patsonakis, C. & Roussopoulos, M. On achieving interactive consistency in real-world distributed systems. J. Parallel Distrib. Comput., 2021, vol. 147, pp. 220–235. DOI: 10.1016/j.jpdc.2020.09.010.
Bannour, B., Souihi, S. & Mellouk, A. Adaptive State Consistency for Distributed ONOS Controllers. IEEE Global Communications Conference (GLOBECOM), 2018, pp. 1–7. DOI: 10.1109/GLOCOM.2018.8647168.
Sakic, E., Sardis, F., Guck, J. W. & Kellerer, W. Towards adaptive state consistency in distributed SDN control plane. IEEE Int. Conf. on Communications (ICC), 2017, pp. 1–7. DOI: 10.1109/ICC.2017.7997164.
de Souza, R. H., Flores, P. A., Dantas, M. A. R. & Siqueira, F. Architectural recovering model for Distributed Databases: A reliability, availability and serviceability approach. IEEE Symposium on Computers and Communication (ISCC), 2016, pp. 575–580. DOI: 10.1109/ISCC.2016.7543799.
Tian, I. & Pang, Y. Adjoin: A causal consistency model based on the adjacency list in a distributed system. Concurr. Comput. Pract. Exp., 2020, vol. 32, no. 22. DOI: 10.1002/cpe.5835.
Nejati Sharif Aldin, B., Deldari, H., Moattar, M. H. & Razavi Ghods, M. Strict Timed Causal Consistency as a Hybrid Consistency Model in the Cloud Environment. Future Gener. Comput. Syst., 2019, vol. 105, pp. 259–274. DOI: 10.1016/j.future.2019.11.038.
Khalfi, B., de Runz, C., Faiz, S. & Akdag, H. A New Methodology for Storing Consistent Fuzzy Geospatial Data in Big Data Environment. IEEE Trans. Big Data, 2021, vol. 7, no. 2, pp. 468–482. DOI: 10.1109/TBDATA.2017.2725904.
Abbaszadeh, M. Weak Consistency Model in Distributed Systems Using Hierarchical Colored Petri Net. J. Comput., 2018 pp. 236–243. DOI: 10.17706/jcp.13.2.236-243.
Lima, D., Miranda, H. & Taiani, F. Simulation of partial replication in Distributed Transactional Memory. Wireless Days, Porto, Portugal, 2017, pp. 54–59. DOI: 10.1109/WD.2017.7918115.
Georgiou, M. A., Paphitis, A., Sirivianos, M. & Herodotou, H. Hihooi: A Database Replication Middleware for Scaling Transactional Databases Consistently. IEEE Trans. Knowl. Data Eng., 2022, vol. 34, no. 2, pp. 691–707. DOI: 10.1109/TKDE.2020.2987560.
Georgiou, M. A., Panayiotou, M., Odysseos, L., Paphitis, A., Sirivianos, M. & Herodotou, H. Attaining Workload Scalability and Strong Consistency for Replicated Databases with Hihooi. Int. Conf. on Management of Data, 2021, pp. 2721–2725. DOI: 10.1145/3448016.3452746.
Guo, I., Li, C. & Luo, Y. Fast replica recovery and adaptive consistency preservation for edge cloud system. Soft Comput., 2020, vol. 24, no. 19, pp. 14943–14964. DOI: 10.1007/s00500-020-04847-2.
Mansouri, N., Mohammad Hasani Zade, B. & Javidi, M. M. A multi-objective optimized replication using fuzzy based self-defense algorithm for cloud computing. J. Netw. Comput. Appl., 2020, vol. 171, article no. 102811. DOI: 10.1016/j.jnca.2020.102811.
Liu, I., Peng, J., Wang, J., Liu, W., Huang, Z. & Pan, J. Scalable and Adaptive Data Replica Placement for Geo-Distributed Cloud Storages. IEEE Trans. Parallel Distrib. Syst., 2020, vol. 31, no. 7, pp. 1575–1587. DOI: 10.1109/TPDS.2020.2968321.
Sun, S., Wang, X. & Zuo, F. RPCC: A Replica Placement Method to Alleviate the Replica Consistency under Dynamic Cloud. Int. Conf.s on Internet of Things (iThings), 2020, pp. 729–734. DOI: 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00126.
Nwe, T., Yee, T. T., Htoon, E. C. & Nakamura, J., A Consistent Replica Selection Approach for Distributed Key-Value Storage System. Int. Conf. on Advanced Information Technologies (ICAIT), 2019, pp. 114–119. DOI: 10.1109/AITC.2019.8921008.
Gomes, V. B. F., Kleppmann, M., Mulligan, D. P. & Beresford, A. R. Verifying Strong Eventual Consistency in Distributed Systems. Proc. ACM Program. Lang., 2017, vol. 1, no. OOPSLA, pp. 1–28. DOI: 10.1145/3133933.
Dai, T., He, J., Gu, X. & Lu, S. Understanding Real-World Timeout Problems in Cloud Server Systems, IEEE Int. Conf. on Cloud Engineering (IC2E), 2018, pp. 1-11. DOI: 10.1109/IC2E.2018.00022.
DOI: https://doi.org/10.32620/reks.2023.2.14
Refbacks
- There are currently no refbacks.