Face recognition-based attendance system with anti-spoofing, system alert, and email automation
Abstract
Keywords
Full Text:
PDFReferences
Arjun Raj, A., Shoheb, M., Arvind, K. & Chethan, K. S. Face Recognition Based Smart Attendance System. International Conference on Intelligent Engineering and Management (ICIEM), 17–19 June 2020, London, United Kingdom, 2020, pp. 354-357. DOI: 10.1109/iciem48762.2020.9160184.
Adjabi, I., Ouahabi, A., Benzaoui, A. & Taleb-Ahmed, A. Past, present, and future of face recognition: A review. Electronics, 2020, vol. 9, iss. 8, article no. 1188. DOI: 10.3390/electronics9081188.
Surekha, B., Nazare, K. J., Viswanadha Raju, S. & Dey, N. Attendance Recording System Using Partial Face Recognition Algorithm. Intelligent Techniques in Signal Processing for Multimedia Security. Studies in Computational Intelligence, vol. 660, Springer, Cham, 2017, pp. 293-319. DOI: 10.1007/978-3-319-44790-2_14.
Kortli, Y., Jridi, M., Al Falou, A. & Atri, M. Face recognition systems: A survey. Sensors, 2020, vol. 20, iss. 2, article no. 342. DOI: 10.3390/s20020342.
Jingade, R. R. & Kunte, R. S. DOG-ADTCP: A new feature descriptor for protection of face identification system. Expert Systems with Applications, 2022, vol. 201, article no. 117207. DOI: 10.1016/j.eswa.2022.117207.
Chaudhari, V., Jain, S., Chaudhari, R., Chavan, T. & Shahane, P. Real Time Face Recognition Based Attendance System using Multi Task Cascaded Convolutional Neural Network. International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 2023, pp. 1-6. DOI: 10.1109/ESCI56872.2023.10099879.
Ramasane, M., Nadaf, S., Shah, K., Ramdasi, P. & Golande, A. An Enhanced Student Attendance Monitoring System at Low Resolution and Various Angled Face Positions based on LBPH and CLAHE. International Conference for Advancement in Technology (ICONAT), Goa, India, 2023, pp. 1-6. DOI: 10.1109/ICONAT57137.2023.10080356.
Rohini, V., Sobhana, M. & Chowdary, C. S. Attendance Monitoring System Design Based on Face Segmentation and Recognition. Recent Patents on Engineering, 2023, vol. 17, iss. 2, pp. 81-91. DOI: 10.2174/1872212116666220401154639.
Valarmathi, R., Uma, R., Brinda, C. & Vashika, R. Facial Detection Attendance System using LBPH and KNN. International Conference on Communication, Computing and Internet of Things (IC3IoT), 10-11 March 2022, Chennai, India, 2022, pp. 1-5. DOI: 10.1109/ic3iot53935.2022.9767943.
Chinimilli, B. T., Anjali, T., Kotturi, A., Kaipu, V. R. & Mandapati, J. V. Face recognition based attendance system using haar cascade and local binary pattern histogram algorithm. 4th international conference on trends in electronics and informatics (ICOEI)(48184), Tirunelveli, India, 2020, pp. 701-704. DOI: 10.1109/ICOEI48184.2020.9143046.
Singh, A., Bhatt, S., Nayak, V. & Shah, M. Automation of surveillance systems using deep learning and facial recognition. International Journal of System Assurance Engineering and Management, 2023, vol. 14, Suppl. 1, pp. 236-245. DOI: 10.1007/s13198-022-01844-6.
Harikrishnan, J., Sudarsan, A., Sadashiv, A. & Ajai, R. A. S. Vision-face recognition attendance monitoring system for surveillance using deep learning technology and computer vision. International conference on vision towards emerging trends in communication and networking (ViTECoN), Vellore, India, 2019, pp. 1-5. DOI: 10.1109/ViTECoN.2019.8899418.
Gupta, N., Sharma, P., Deep, V. & Shukla, V. K. Automated attendance system using OpenCV. 8th International Conference on Reliability. Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO), Noida, India, 2020, pp. 1226-1230. DOI: 10.1109/ICRITO48877.2020.9197936.
Kim, S., An, G. H. & Kang, S. J. Facial expression recognition system using machine learning. International SoC design conference (ISOCC), Seoul, Korea (South), 2017, pp. 266-267. DOI: 10.1109/ISOCC.2017.8368887.
Sanchez-Moreno, A. S., Olivares-Mercado, J., Hernandez-Suarez, A., Toscano-Medina, K., Sanchez-Perez, G. & Benitez-Garcia, G. Efficient face recognition system for operating in unconstrained environments. Journal of Imaging, 2021, vol. 7, iss. 9, article no. 161. DOI: 10.3390/jimaging7090161.
Hasan, M. R., Mahmud, S. H. & Li, X. Y. Face anti-spoofing using texture-based techniques and filtering methods. Journal of Physics: Conference Series, 2019, May, vol. 1229, iss. 1, article no. 012044. DOI: 10.1088/1742-6596/1229/1/012044.
Rubel, O. & Lukin, V. Analiz i prognozirovaniye effektivnosti fil'tratsii s ispol'zovaniyem bezetalonnykh mer vizual'nogo kachestva izobrazheniy [Analysis and prediction of filtering efficiency using no-reference image visual quality metrics]. Radioelectronic and Computer Systems, 2018, no. 1, pp. 4-14. DOI: 10.32620/reks.2018.1.01.
Dergachov, K., Кrasnov, L., Bilozerskyi, V. & Zymovin, A. Data pre-processing to increase the quality of optical text recognition systems. Radioelectronic and Computer Systems, 2021, no. 4, pp. 183-198. DOI: 10.32620/reks.2021.4.15.
Marr, D. & Hildreth, E. Theory of edge detection. Proceedings of the Royal Society of London. Series B. Biological Sciences, 1980, vol. 207, article no. 1167, pp. 187-217. DOI: 10.1098/rspb.1980.0020.
Tran, C. K., Ngo, T.-H., Nguyen, C.-N. & Nguyen, L. A. SVM-based face recognition through difference of Gaussians and local phase quantization. International Journal of Computer Theory and Engineering, 2021, vol. 13, no. 1, pp. 1-8. DOI: 10.7763/IJCTE.2021.V13.1282.
Viola, P. & Jones, M. Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001, Kauai, HI, USA, 2001, Vol. 1, pp. I-511 – I-518. DOI: 10.1109/CVPR.2001.990517.
Lienhart, R., Kuranov, A. & Pisarevsky, V. Empirical analysis of detection cascades of boosted classifiers for rapid object detection. Pattern Recognition. DAGM 2003. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2003, vol. 2781, pp. 297-304. DOI: 10.1007/978-3-540-45243-0_39.
Özdil, A. & Özbilen, M. M. A survey on comparison of face recognition algorithms. IEEE 8th International Conference on Application of Information and Communication Technologies (AICT), Astana, Kazakhstan, 2014, pp. 1-3. DOI: 10.1109/ICAICT.2014.7035956.
Bhavikatti, S. & Bhairannawar, S. Efficient Reconfigurable Architecture to Extract Image Features using Local Binary Pattern for Face Recognition. Research Square, 2023, PREPRINT, Version 1. DOI: 10.21203/rs.3.rs-1573522/v1.
Samet, R. & Tanriverdi, M. September. Face recognition-based mobile automatic classroom attendance management system. International conference on cyberworlds (CW), Chester, UK, 2017, pp. 253-256. DOI: 10.1109/CW.2017.34.
DOI: https://doi.org/10.32620/reks.2023.2.10
Refbacks
- There are currently no refbacks.