Continuous cuffless blood pressure measurement using feed-forward neural network
Abstract
Keywords
Full Text:
PDFReferences
Hypertension: Information, Facts and Statistics. Disabled World, 2023. Available at: https://www.disabled-world.com/health/cardiovascular/hypertension (accessed 2 March 2023).
Arima, H., Barzi, F. &Chalmers, J. Mortality patterns in hypertension. Journal of Hypertension, 2011, vol. 29, iss. 1, pp. 3-7. DOI: 10.1097/01.hjh.0000410246.59221.b1.
Raised Blood Pressure, 2020. Available at: http://www.who.int/gho/ncd/risk_factors/en/ (accessed 20 Sep. 2020).
WHO. A global brief on Hypertension, Silent killer, global public health crisis, 2013. Available at: https://apps.who.int/iris/rest/bitstreams/195800/retrieve (accessed 20 May 2023).
Viera, A. Screening for Hypertension and Lowering Blood Pressure for Prevention of Cardiovascular Disease Events. Medical Clinics of North America, 2017, vol. 101, iss. 4, pp. 701-712. DOI: 10.1016/j.mcna.2017.03.003.
Whelton, P., Carey, R., Aronow, W., CaseyJr, D., Collins, K., Himmelfarb, C., DePalma, S., Gidding, S., Jamerson, K., Jones, D., MacLaughlin, E., Muntner, P., Ovbiagele, B., SmithJr, S., Spencer, C., Stafford, R., Taler, S., Thomas, R., WilliamsSr, K., Williamson, J. & WrightJr, J. T. ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension, 2018, vol. 71, iss. 6, pp. e13-e115. DOI: 10.1161/HYP.0000000000000065.
Siu, A. Screening for high blood pressure in adults: U.S. Preventive Services Task Force recommendation statement. Annals of Internal Medicine, 2015, vol. 163, iss. 10, pp. 778-786. DOI:10.7326/m15-2223.
Bakris, G., Ali, W. & Parati, G. ACC/AHA versus ESC/ESH on hypertension guidelines: JACC guideline comparison. Journal of the American College of Cardiology, 2019, vol. 73, iss. 23, pp. 3018-3026. DOI: 10.1016/j.jacc.2019.03.507.
Lam, S., Liu, H., Jian, Z., Settels, J. &Bohringer, C. Intraoperative Invasive Blood Pressure Monitoring and the Potential Pitfalls of Invasively Measured Systolic Blood Pressure. Cureus Journal of Medical Science, 2021, vol. 13, iss. 8, article no. e17610. DOI: 10.7759/cureus.17610.
Geddes, L., Voelz, M. & Combs, C. Characterization of the oscillometric method for measuring indirect blood pressure. Annals of Biomedical Engineering, 1982, vol. 10, iss. 6, pp. 271-280. DOI: 10.1007/BF02367308.
Geddes, L., Hoff, H. & Badger, A. Introduction of the auscultatory method of measuring blood pressure–including a translation of Korotkoff’s original paper. Cardiovascular research center bulletin, 1966, vol. 5, iss. 2, pp. 57-74. PMID: 5341624. Available at: https://pubmed.ncbi.nlm.nih.gov/5341624/ (accessed 28 April 2023).
George, J. &MacDonald, T. Home blood pressure monitoring. European Cardiology Review, 2015, vol. 10, iss. 2, pp. 95-100. DOI: 10.15420/ecr.2015.10.2.95.
Campbell, N., Chockalingam, A. &Fodor, J., McKay, D. Accurate, reproducible measurement of blood pressure. Canadian Medical Association Journal, 1990, vol. 143, iss. 1, pp. 19-22. PMID: 2192791. Available at: https://pubmed.ncbi.nlm.nih.gov/2192791/ (accessed 3 May 2023).
More, W. &Barbé, K. Influence of the cuff deflation mode on oscillometric blood pressure measurements. In Proceedings of the IEEE international workshop, Bari, Italy, 30-31 May 2011, pp. 652-656. DOI: 10.1109/MeMeA.2011.5966650.
Thomas, S., Nathan, V. & Zong, C. BioWatch: a noninvasive wrist-based blood pressure monitor that incorporates training techniques for posture and subject variability. IEEE Journal of Biomedical and Health Informatics, 2014, vol. 20, iss. 5, pp. 1291-1300. DOI: 10.1109/JBHI.2015.2458779.
Miyauchi, Y., Koyama, S. & Ishizawa, H. Basic Experiment of Blood-pressure Measurement which Uses FBG Sensors. In Proceedings of the Instrumentation and measurement technology conference, Minneapolis, MN, USA, 6-9 May 2013, pp. 1767-1770. DOI: 10.1109/I2MTC.2013.6555718.
Katsuragawa, Y. & Ishizawa, H. Non-invasive blood pressure measurement by pulse wave analysis using FBG sensor. In Proceedings of the Instrumentation and measurement technology conference, Pisa, Italy, 11-14 May 2015, pp. 511-515. DOI: 10.1109/I2MTC.2015.7151320
Ahlstrom, C., Johansson, A. & Uhlin, F. Noninvasive investigation of blood pressure changes using the pulse wave transit time: a novel approach in the monitoring of hemodialysis patients. Journal of Artificial Organs, 2005, vol. 8, iss. 3, pp. 192-197. DOI: 10.1007/s10047-005-0301-4.
Sharwood-Smith, G., Bruce, J. & Drummond, G. Assessment of pulse transit time to indicate cardiovascular changes during obstetric spinal anaesthesia. British Journal of Anaesthesia, 2005, vol. 96, iss. 1, pp. 100-105. DOI: 10.1093/bja/aei266.
Cattivelli, F. & Garudadri, H. Noninvasive Cuffless Estimation of Blood Pressure from Pulse Arrival Time and Heart Rate with Adaptive Calibration. In Proceedings of the IEEE BSN Sixth international workshop, Berkeley, CA, USA, 03-05 June 2009, pp. 114-119. DOI: 10.1109/BSN.2009.35.
He, X., Goubran, R. & Liu, X. Secondary peak detection of PPG signal for continuous cuffless arterial blood pressure measurement. IEEE Transactions on Instrumentation and Measurement, 2014, vol. 63, iss. 6, pp. 1431-1439. DOI: 10.1109/TIM.2014.2299524.
Ahmad, S., Chen, S. & Soueidan, K. Electrocardiogram-assisted blood pressure estimation. IEEE Transactions on Biomedical Engineering, 2012, vol. 59, iss. 3, pp. 608-618. DOI: 10.1109/TBME.2011.2180019.
Wang, R., Jia, W. & Mao, Z. Cuff-Free Blood Pressure Estimation Using Pulse Transit Time and Heart Rate. In Proceedings of the 12th international conference on signal processing, Hangzhou, China, 19-23 October 2014, pp. 115-118. DOI: 10.1109/ICOSP.2014.7014980.
Tanveer, S. & Hasan, K. Cuffless blood pressure estimation from electrocardiogram and photoplethysmogram using waveform based ANN-LSTM network. Biomedical Signal Processing and Control, 2019, vol. 51, pp. 382-392. DOI: 10.1016/j.bspc.2019.02.028.
Kumar, S. & Ayub, S. Estimation of Blood Pressure by Using Electrocardiogram (ECG) and Photo-Plethysmogram (PPG). In Proceedings of the 5th international conference on communication systems and network technologies, Gwalior, India, 4-6 April 2015, pp. 521-524. DOI: 10.1109/CSNT.2015.99.
Yan, Y. & Zhang, Y. A Novel Calibration Method for Noninvasive Blood Pressure Measurement Using Pulse Transit Time. In Proceedings of the 4th IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors St Catharine's College, Cambridge, UK, 19-22 August 2007, pp. 22-24. DOI: 10.1109/ISSMDBS.2007.4338283.
Rundo, F., Ortis, A., Battiato, S. & Conoci, S. Advanced Bio-Inspired System for Noninvasive Cuff-Less Blood Pressure Estimation from Physiological Signal Analysis. Computation, 2018, vol. 6, iss. 3, article no. 46. DOI: 10.3390/computation6030046.
Liu, Z., Liu, J., Wen, B., He, Q., Li, Y. & Miao, F. Cuffless Blood Pressure Estimation Using Pressure Pulse Wave Signals. Sensors, 2018, vol. 18, iss. 12, article no. 4227. DOI: 10.3390/s18124227.
Rong, M. & Li, K. A multi-type features fusion neural network for blood pressure prediction based on photoplethysmography. Biomedical Signal Processing and Control, 2021, vol. 68, article no. 102772. DOI: 10.1016/j.bspc.2021.102772.
Kachuee, M., Kiani, M., Mohammadzade, H. & Shabany, M. Cuff-Less Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring. IEEE Transactions on Biomedical Engineering, 2017, vol. 64, pp. 859-869. DOI: 10.1109/TBME.2016.2580904.
Gaurav, A., Maheedhar, M., Tiwari, V. & Narayanan, R. Cuff-less PPG based continuous blood pressure monitoring: a smartphone based approach. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 16-20 August 2016, Orlando, FL, USA, pp. 607-610. DOI: 10.1109/EMBC.2016.7590775.
Zhang, Q., Chen, X., Zhen, F. & Xia, S. Cuff-less blood pressure measurement using pulse arrival time and Kalman filter. Journal of Micromechanics and Microengineering, 2017, vol. 27, iss. 2, article no. 024002. DOI: 10.1088/1361-6439/27/2/024002.
Simjanoska, M., Gjoreski, M. & Gams, M. Non-invasive blood pressure estimation from ECG using machine learning techniques. Sensors, 2018, vol. 18, iss. 4, article no. 1160. DOI: 10.3390/s18041160.
Foo, J., Lim, C. & Wang, P. Evaluation of blood pressure changes using vascular transit time. Physiological Measurement, 2006, vol. 27, iss. 8, pp. 685-694. DOI: 10.1088/0967-3334/27/8/003.
Peng, R., Yan, W. & Zhang, N. Cuffless and continuous blood pressure estimation from the heart sound signals. Sensors, 2015, vol. 15, iss. 9, pp. 23653-23666. DOI: 10.3390/s150923653.
Chandrasekaran, V., Dantu, R. & Jonnada, S. Cuffless differential blood pressure estimation using smart phones. IEEE Transactions on Biomedical Engineering, 2013, vol. 60, iss. 4, pp. 1080-1089. DOI: 10.1109/TBME.2012.2211078.
Shukla, S., Kakwani, K. & Patra, A. Noninvasive cuffless blood pressure measurement by vascular transit time. In Proceedings of the 28th international conference on VLSI Design, Bangalore, India, January 2015, pp, 535-540. DOI: 10.1109/VLSID.2015.96.
Wu, C., Chuang, C. & Chen, Y. A new estimate technology of non-invasive continuous blood pressure measurement based on electrocardiograph. Advances in Mechanical Engineering, 2016, vol. 8, iss. 6, pp. 1-8. DOI: 10.1177/1687814016653689.
Hazra, S., Ema, R., Galib, S., Kabir, S. & Adnan, N. Emotion recognition of human speech using deep learning method and MFCC features. Radioelektronni i komp'uterni sistemi. Radioelectronic and computer systems, 2022, vol. 4, pp. 161-172. DOI: 10.32620/reks.2022.4.13.
Martínez-Sellés, M. & Marina-Breysse, M. Current and Future Use of Artificial Intelligence in Electrocardiography. Journal of Cardiovascular Development and Disease, 2023, vol. 10, iss. 4, article no. 175. DOI: 10.3390/jcdd10040175.
Moskalenko, V. & Moskalenko, A. Neural network based image classifier resilient to destructive perturbation influences – architecture and training method. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2022, vol. 3, pp. 95-109. DOI: 10.32620/reks.2022.3.07.
Krivtsov, S., Meniailov, I., Bazilevych, K. & Chumachenko, D. Predictive model of COVID-19 epidemic process based on neural network. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2022, vol. 4, pp. 7-18. DOI: 10.32620/reks.2022.4.01.
Malte, S. & Hagemeier, A. Developing Feedforward Neural Networks as Benchmark for Load Forecasting: Methodology Presentation and Application to Hospital Heat Load Forecasting. Energies, 2023, vol. 16, iss. 4, article no. 2026. DOI: 10.3390/en16042026.
Huynh, T., Jafari, R. & Chung, W. Noninvasive cuffless blood pressure estimation using pulse transit time and impedance plethysmography. IEEE Transactions on Biomedical Engineering, 2019, vol. 66, pp. 967-976. DOI: 10.1109/tbme.2018.2865751.
Ding, X., Zhang, Y., Liu, J., Dai, W. & Tsang, H. Continuous cuffless blood pressure estimation using pulse transit time and photoplethysmogram intensity ratio. IEEE Transactions on Biomedical Engineering, 2016, vol. 66, iss. 4, pp. 964-972. DOI: 10.1109/TBME.2015.2480679.
Lin, W. New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy. Physiological Measurement, 2018, vol. 39, iss. 2, article no. 025005. DOI: 10.1088/1361-6579/aaa454.
Al-Abed, M., Al-Bashir, A., Al-Rawashdeh, A., Alex, R., Zhang, R., Watenpaugh, D. & Behbehani, K. Estimation of cerebral blood flow velocity during breath-hold challenge using artificial neural networks. Computers in Biology and Medicine, 2019, vol. 115, article no. 103508. DOI: 10.1016/j.compbiomed.2019.103508.
Soh, D., Ng, E., Jahmunah, V., Oh, S., Tan, R. & Acharya, U. Automated diagnostic tool for hypertension using convolutional neural network. Computers in Biology and Medicine, 2020, vol. 126, article no. 103999. DOI: 10.1016/j.compbiomed.2020.103999.
Wu, C., Chuang, C., Chen, Y. & Chen, S. A new estimate technology of non-invasive continuous blood pressure measurement based on electrocardiograph. Advances in Mechanical Engineering, 2016, vol. 8, iss. 6. DOI:10.1177/1687814016653689.
Esmaelpoor, J., Moradi, M. & Kadkhodamohammadi, A. Cuffless blood pressure estimation methods: Physiological model parameters versus machine-learned features. Physiological Measurement, 2021, vol. 42, article no. 035006. DOI: 10.1088/1361-6579/abeae8.
Hengbing, J., Lili, Z., Dequn, H. & Qianjin, F. Continuous Blood Pressure Estimation Based on Multi-Scale Feature Extraction by the Neural Network with Multi-Task Learning. Frontiers in Neuroscience, 2022, vol. 16, article no. 883693. DOI: 10.3389/fnins.2022.883693.
Malayeri, A. & Khodabakhshi, M. Concatenated convolutional neural network model for cuffless blood pressure estimation using fuzzy recurrence properties of photoplethysmogram signals. Scientific reports, 2022, vol. 12, article no. 6633. DOI: 10.1038/s41598-022-10244-6.
Li, Y., Harfiya, L., Purwandari, K. & Lin, Y. Real-Time Cuffless Continuous Blood Pressure Estimation Using Deep Learning Model. Sensors, 2020, vol. 20, article no. 5606. DOI: 10.3390/s20195606.
González, S., Hsieh, W. & Chen, T. A benchmark for machine-learning based non-invasive blood pressure estimation using photoplethysmogram. Scientific Data, 2023, vol. 10, article no. 149. DOI: 10.1038/s41597-023-02020-6.
Pilz, N., Patzak, A.and Bothe, T. Continuous cuffless and non-invasive measurement of arterial blood pressure-concepts and future perspectives. Blood Pressure, 2022, vol. 31, iss. 1, pp. 254-269. DOI: 10.1080/08037051.2022.2128716.
Athaya, T. & Choi, S. Real-Time Cuffless Continuous Blood Pressure Estimation Using 1D Squeeze U-Net Model: A Progress toward mHealth. Biosensors, 2022, vol. 12, article no. 655. DOI: 10.3390/bios12080655.
Zhou, K., Yin, Z., Peng, Y. & Zeng, Z. Methods for Continuous Blood Pressure Estimation Using Temporal Convolutional Neural Networks and Ensemble Empirical Mode Decomposition. Electronics, 2022, vol. 11, article no. 1378. DOI: 10.3390/electronics11091378.
Harfiya, L., Chang, C. & Li, Y. Continuous Blood Pressure Estimation Using Exclusively Photopletysmography by LSTM-Based Signal-to-Signal Translation. Sensors, 2021, vol. 21, article no. 2952. DOI: 10.3390/s21092952.
ZengDing, L., Bin, Z., Ye, L., Min, T. & Fen, M. Continuous Blood Pressure Estimation from Electrocardiogram and Photoplethysmogram During Arrhythmias. Frontiers in Physiology, 2020, vol. 11, article no. 575407. DOI: 10.3389/fphys.2020.575407.
Che, X., Li, M., Kang, W., Lai, F. & Wang, J. Continuous Blood Pressure Estimation from Two-Channel PPG Parameters by XGBoost. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 06-08 December 2019, pp. 2707-2712. DOI: 10.1109/ROBIO49542.2019.8961600.
Tarifi, B., Fainman, A., Pantanowitz, A. & Rubin, D. A Machine Learning Approach to the Non-Invasive Estimation of Continuous Blood Pressure Using Photoplethysmography. Applied Sciences, 2023, vol. 13, article no. 3955. DOI: 10.3390/app13063955.
Hangsik, S. A novel method for non-invasive blood pressure estimation based on continuous pulse transit time: An observational study. Psychophysiology, 2023, vol. 60, iss. 2, article no. e14173. DOI: 10.1111/psyp.14173.
Viunytskyi, O., Shulgin, V., Sharonov, V. & Totsky, A. Non-invasive Cuff-less Measurement of Blood Pressure Based on Machine Learning. In Proceedings of the IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering, Lviv-Slavske, Ukraine, 25-29 February 2020, pp. 203-206. DOI: 10.1109/TCSET49122.2020.235423.
Viunytskyi, O., Shulgin, V., Totsky, A. & Egiazarian, K. Human Blood Pressure Measurement Using Machine Learning Strategy. Telecommunications and Radio Engineering, 2022, vol. 81, iss. 3, pp. 1-21. DOI: 10.1615/TelecomRadEng.2022037783.
Wong, M., Hei, H., Lim, S. & Ng, E. Applied machine learning for blood pressure estimation using a small, real-world electrocardiogram and photoplethysmogram dataset. Mathematical Biosciences and Engineering, 2023, vol. 20, iss. 1, pp. 975-997. DOI: 10.3934/mbe.2023045.
Brophy, E., Vos, M., Boylan, G. & Ward, T. Estimation of Continuous Blood Pressure from PPG via a Federated Learning Approach. Sensors, 2021, vol. 21, article no. 6311. DOI: 10.3390/s21186311.
Harfiya, L., Chang, C. & Li, Y. Continuous Blood Pressure Estimation Using Exclusively Photopletysmography by LSTM-Based Signal-to-Signal Translation. Sensors, 2021, vol. 21, article no. 2952. DOI: 10.3390/s21092952.
Jinzhong, Z. & Xu, Y. Training Feedforward Neural Networks Using an Enhanced Marine Predators Algorithm. Processes, 2023, vol. 11, iss. 3, article no. 924. DOI: 10.3390/pr11030924.
XAI-MEDICA, Equipment’s catalog, 2023. Available at: https://xai-medica.com/en/equipments.html (accessed 3 March 2023)
Ghosh, R., Phadikar, S., Deb, N., Sinha, N., Das, P. & Ghaderpour, E. Automatic Eyeblink and Muscular Artifact Detection and Removal from EEG Signals Using k-Nearest Neighbor Classifier and Long Short-Term Memory Networks. IEEE Sensors Journal, 2023, vol. 23, iss. 5, pp. 5422-5436. DOI: 10.1109/JSEN.2023.3237383.
Abramov, S., Abramova, V., Krivenko, S. & Lukin, V. Analiz i prohnozuvannya efektyvnosti filʹtratsiyi odnovymirnykh syhnaliv na osnovi dyskretnoho kosynusnoho peretvorennya [Analysis and prediction of filtering efficiency of one-dimensional signals based on discrete cosine transformation]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2019, vol. 3, pp. 19-29. DOI: 10.32620/reks.2019.3.02. (In Russian).
Tulyakova, N. & Trofymchuk, O. Lokalʹno-adaptyvna filʹtratsiya nestatsionarnoho shumu v tryvalykh elektrokardiohrafichnykh syhnalakh [Locally adaptive filterig of non-stationary noise in long-term electrocardiographic signals]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2020, vol. 4, pp. 16-33. DOI: 10.32620/reks.2020.4.02 (In Russian).
Rudenko, O. & Bezsonov, O. Adaptive identification under the maximum correntropy criterion with variable center. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2022, vol. 1, pp. 216-228. DOI: 10.32620/reks.2022.1.17.
Viunytskyi, O. & Shulgin, V. Fetal ECG and heart rhythm analyzing using BabyCard. In Proceedings of the 2017 Signal Processing Symposium, Jachranka, Poland, 12-14 September 2017, pp. 1-4. DOI: 10.1109/SPS.2017.8053640.
Viunytskyi, O. & Shulgin, V. Signal processing techniques for fetal electrocardiogram extraction and analysis. In Proceedings of the IEEE 37th International Conference on Electronics and Nanotechnology, Kyiv, Ukraine, 18-20 April 2017, pp. 325-328. DOI: 10.1109/ELNANO.2017.7939772.
Shulgin, V. & Viunytskyi, O. Spatio-temporal signal processing for fetus and mother state monitoring during pregnancy. In Proceedings of the IEEE 9th International Conference on Dependable Systems, Services and Technologies, Kyiv, Ukraine, 24-27 May 2018, pp. 677-680. DOI: 10.1109/DESSERT.2018.8409210.
Jacobson, A. Auto-threshold peak detection in physiological signals. In Proceedings of the 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, 25-28 October 2001, vol. 3, pp. 2194-2195. DOI: 10.1109/IEMBS.2001.1017206.
Scholkmann, F., Boss, J. & Wolf, M. An efficient algorithm for automatic peak detection in noisy periodic and quasi-periodic signals. Algorithms, 2012, vol. 5, iss. 4, pp. 588-603. DOI: 10.3390/a5040588.
Navid, H., Mahdi, A. & Hoda, M. Blood Pressure Estimation Using Photoplethysmogram Signal and Its Morphological Features. IEEE Sensors Journal, 2019, vol. 20, iss. 8, pp. 4300-4310. DOI: 10.1109/JSEN.2019.2961411.
Clémentine, A., João, J., Jérôme, Z., Martin, P., Guillaume, B., Pascal, F. & Mathieu, L. Blood pressure monitoring during anesthesia induction using PPG morphology features and machine learning. PLOS One, 2023, vol. 18, iss. 2, article no. e0279419. DOI: 10.1371/journal.pone.0279419.
Poon, C. & Zhang, Y. Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17-18 January 2006, pp. 5877-5880. DOI: 10.1109/IEMBS.2005.1615827.
Jadooei, A., Zaderykhin, O. & Shulgin, V. Adaptive algorithm for continuous monitoring of blood pressure using a pulse transit time. In Proceedings of the Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 16-19 April 2013, pp. 297-301. DOI: 10.1109/ELNANO.2013.6552042.
DOI: https://doi.org/10.32620/reks.2023.2.04
Refbacks
- There are currently no refbacks.