Modeling and estimating the model adequacy in muscle tissue electrical stimulator designing
Abstract
Keywords
Full Text:
PDFReferences
Alves, P. K. N., Silvestre, J. G., Sougey, W. W. D., Cruz, A. & Moriscot, A. S. Improved Electrical Stimulation-Based Exercise Model to Induce Mice Tibialis Anterior Muscle Hypertrophy and Function. Appl. Sci, 2022, vol. 12, iss. 15, article no. 7673. DOI: 10.3390/app12157673.
Pascual-Valdunciel, A., Lopo-Martínez, V., Beltrán-Carrero, A. J., Sendra-Arranz, R., González-Sánchez, M., Pérez-Sánchez, J. R., Grandas, F., Farina, D., Pons, J. L., Oliveira Barroso, F. & Gutiérrez, Á. Classification of Kinematic and Electromyographic Signals Associated with Pathological Tremor Using Machine and Deep Learning. Entropy, 2023, vol. 25, iss. 1, article no. 114. DOI: 10.3390/e25010114.
Zanini, R. A., Colombini, E. L. & de Castro, M. C. F. Parkinson’s Disease EMG Signal Prediction Using Neural Networks. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 2019, pp. 2446-2453. DOI: 10.1109/SMC.2019.8914553.
Pascual-Valdunciel, A., Hoo, G. W., Avrillon, S., Barroso, F. O., Goldman, J. G., Hernandez-Pavon, J. C. & Pons, J. L. Peripheral electrical stimulation to reduce pathological tremor: A review. J. Neuroeng. Rehabil, 2021, vol. 18, article no. 33. DOI: 10.1186/s12984-021-00811-9.
Pascual-Valdunciel, A., Rajagopal, A., Pons, J. L. & Delp, S. Non-invasive electrical stimulation of peripheral nerves for the management of tremor. J. Neurol. Sci., 2022, vol. 435, article no. 120195. DOI: 10.1016/j.jns.2022.120195.
Latorre, A., Hallett, M., Deuschl, G. & Bhatia, K. P. The MDS consensus tremor classification: The best way to classify patients with tremor at present. J. Neurol. Sci., 2022, vol. 435, article no. 120191. DOI: 10.1016/j.jns.2022.120191.
Jackson, J. Specific treatment techniques. Physical Management in Neurological Rehabilitation (Second Edition). Elsevier Health Sciences, 2004, pp. 393-413.
Enoka, M. R., Amiridis, I. G. & Duchateau, J. Electrical Stimulation of Muscle: Electrophysiology and Rehabilitation. Physiology, 2020, vol. 35, iss. 1, pp. 40-56. DOI: 10.1152/physiol.00015.2019.
Malygin, A. V. Opredeleniye optimal'nykh paramet-rov transkranial'noy elektrostimulyatsii na osnove matematicheskoy modeli neyronnykh struktur [Determination of the optimal parameters of transcranial electrical stimulation based on a mathematical model of neural structures]. Meditsinskiye komp'yuternyye tekhnologii – «Medical computer technologies», 2009, vol. 5, pp. 25-32. (In Russian).
Yeroshenko, O. & Prasol, I. Simulation of the electrical signal of the muscles to obtain the electromiosignal spectrum. Technology Audit and Production Reserves, 2022, vol. 2, no. 2(64), pp. 38-43. DOI: 10.15587/2706-5448.2022.254566.
Yeroshenko, O., Prasol, I. & Suknov, M. Modeling of electrostimulation characteristics to determine the optimal amplitude of current stimuli. Radioelectronic and Computer Systems, 2022, no. 2, pp. 191-199. DOI: 10.32620/reks.2022.2.15.
Prasol, I., Dovnar, O. & Yeroshenko, O. Method of diagnosing some diseases of the neuro-muscular system and features of data processing in software. Technology Audit and Production Reserves, 2023, vol. 1, no. 2(69), pp. 20-25. DOI: 10.15587/2706-5448.2023.273848.
Murillo-Escobar, J., Jaramillo-Munera, Y. E., Orrego-Metaute, D. A., Delgado-Trejos, E. & Cuesta-Frau, D. Muscle fatigue analysis during dynamic contractions based on biomechanical features and Permutation Entropy. Mathematical Biosciences and Engineering, 2020, vol. 17, iss. 3, pp. 2592-2615. DOI: 10.3934/mbe.2020142
Zhao, S., Mehta, A. & Zhao, M. Biomedical applications of electrical stimulation. Cell Mol Life Sci., 2020, vol. 77, no. 14, pp. 2681-2699. DOI: 10.1007/s00018-019-03446-1.
Prasol, I., Dovnar, O. & Yeroshenko, O. Method of Diagnostic Parameters Analysis and Software Features. IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 2022, pp. 1-4. DOI: 10.1109/KhPIWeek57572.2022.9916500.
Álvarez, D. M.-C., Serrano-Muñoz, D., Fernández-Pérez, J. J., Gómez-Soriano, J. & Avendaño-Coy, J. Effect of Percutaneous Electric Stimulation with High‐Frequency Alternating Currents on the Sensory-Motor System of Healthy Volunteers: A Double-Blind Randomized Controlled Study. Journal of Clinical Medicine, 2022, vol. 11, iss. 7, article no. 1832. DOI: 10.3390/jcm11071832.
Jung, J., Lee, D.-W., Son, Y. K., Kim, B. S., Shin, H. C. Volitional EMG Estimation Method during Functional Electrical Stimulation by Dual-Channel Surface EMGs. Sensors, 2021, vol. 21, iss. 23, article no. 8015. DOI: 10.3390/s21238015.
Fedorchenko, V., Prasol, I. & Yeroshenko, O. Information Technology For Identification Of Electric Stimulating Effects Parameters. CEUR Workshop Proceedings, 2021, vol. 3200, pp. 189-195. Available at: https://ceur-ws.org/Vol-3200/paper26.pdf. (accessed Jan. 12 2023).
Grosprêtre, S. & Martin. A. H reflex and spinal excitability: methodological considerations. J. Neurophysiol, 2012, vol. 107, iss. 6, pp. 1649-1654. DOI: 10.1152/jn.00611.2011.
Yakovlev, S., Kartashov, O. & Podzeha, D. Mathematical Models and Nonlinear Optimization in Continuous Maximum Coverage Location Problem. Computation, 2022, vol. 10, iss. 7, article no. 119. DOI: 10.3390/computation10070119.
Yakovlev, S., Kartashov, O. & Mumrienko, A. Formalization and solution of the maximum area coverage problem using library Shapely for territory monitoring. Radioelectronic and Computer Systems, 2022, vol. 2, pp. 35-48. DOI: 10.32620/reks.2022.2.03.
Alefeld, G. & Mayer, G. Interval analysis: theory and applications. Journal of Computational and Applied Mathematics, 2000, vol. 121, iss. 1-2, pp. 421-464. DOI: 10.1016/S0377-0427(00)00342-3.
Mustafa, M., Stancu, A., Gutierrez, S. P., Codres, E. A. & Jaulin, L. Rigid Transformation Using Interval Analysis for Robot Motion Estimation. 20th International Conference on Control Systems and Computer Science, Bucharest, Romania, 2015, pp. 24-31, DOI: 10.1109/CSCS.2015.98.
Shary, S. P. On optimal solution of interval linear equations. SIAM Journal on Numerical Analysis, 1995, vol. 32, iss. 2, pp. 610-630. Available at: http://www.jstor.org/stable/2158414. (accessed Jan. 12 2023).
Hofer, E. P. & Rauh, A. Applications of interval algorithms in engineering. 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006), Duisburg, Germany, 2006, pp. 1-12, DOI: 10.1109/SCAN.2006.10.
Jolin, L., Kiefer, M., Didri, O. & Walter, E. Prikladnoy interval'nyy analiz [Applied interval analysis]. Izhevsk, Institute of Computer Research Publ., 2005. 468 p. (In Russian).
Shary, S. P. Solving the linear interval tolerance problem. Mathematics and Computers in Simulation, 1995, vol. 39, iss. 1-2, pp. 53-85. DOI: 10.1016/0378-4754(95)00135-K.
Norenkov, I. P., Zinoviev, P. A. & Buldakova, T. I. Algoritmy tsentrirovaniya na osnove lineynykh approksimatsiy [Algorithms for centering based on linear approximations]. Izvestiya vysshikh uchebnykh zavedeniy: Radioelektronika – «News of higher educational institutions: Radioelectronics», 1983, no. 2(6), pp. 14-18. (In Russian).
DOI: https://doi.org/10.32620/reks.2023.2.02
Refbacks
- There are currently no refbacks.