Modeling and estimating the model adequacy in muscle tissue electrical stimulator designing

Igor Prasol, Olha Yeroshenko

Abstract


The research object is the mathematical modeling of human skeletal muscle electrical stimulation characteristics during therapy. The subject of research is mathematical models of electrical stimulation characteristics that relate muscle contraction amplitude to the amplitude, the rate of stimulating effects, and other parameters. The research purpose is to study such models, develop an algorithm for their correction and a method for estimating their adequacy. The methods used: mathematical modeling methods, methods of structural and parametric identification of models, optimization methods, methods for estimating the adequacy of models, and interval methods. The results: an algorithm for muscle electrical stimulation characteristics mathematical models correcting during several sessions in case of their change is proposed; a method for estimating the model adequacy area in the external variables space in order to control its adequacy is proposed; using the interval mathematics methods to construct the adequacy actual area is justified; an interval estimating of the error in modeling a certain output characteristic is introduced, that, in the case of characteristic monotonicity, allows checking the adequacy maintaining by checking some inequalities. The results can be used in the design of electrical stimulators and for determining the electrical stimulation effects of individual parameters during one session or a series of sessions. The scientific originality: the interval mathematics methods for approximating the mathematical model adequacy area in a hyperparallepiped and checking for nesting in the target area in the external parameters space in order to control the adequacy during the model correction in electrical stimulation is proposed and justified.

Keywords


electrical stimulation; skeletal muscle; mathematical modeling; area of adequacy, estimation, interval methods; electrical stimulators designing

Full Text:

PDF

References


Alves, P. K. N., Silvestre, J. G., Sougey, W. W. D., Cruz, A. & Moriscot, A. S. Improved Electrical Stimulation-Based Exercise Model to Induce Mice Tibialis Anterior Muscle Hypertrophy and Function. Appl. Sci, 2022, vol. 12, iss. 15, article no. 7673. DOI: 10.3390/app12157673.

Pascual-Valdunciel, A., Lopo-Martínez, V., Beltrán-Carrero, A. J., Sendra-Arranz, R., González-Sánchez, M., Pérez-Sánchez, J. R., Grandas, F., Farina, D., Pons, J. L., Oliveira Barroso, F. & Gutiérrez, Á. Classification of Kinematic and Electromyographic Signals Associated with Pathological Tremor Using Machine and Deep Learning. Entropy, 2023, vol. 25, iss. 1, article no. 114. DOI: 10.3390/e25010114.

Zanini, R. A., Colombini, E. L. & de Castro, M. C. F. Parkinson’s Disease EMG Signal Prediction Using Neural Networks. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 2019, pp. 2446-2453. DOI: 10.1109/SMC.2019.8914553.

Pascual-Valdunciel, A., Hoo, G. W., Avrillon, S., Barroso, F. O., Goldman, J. G., Hernandez-Pavon, J. C. & Pons, J. L. Peripheral electrical stimulation to reduce pathological tremor: A review. J. Neuroeng. Rehabil, 2021, vol. 18, article no. 33. DOI: 10.1186/s12984-021-00811-9.

Pascual-Valdunciel, A., Rajagopal, A., Pons, J. L. & Delp, S. Non-invasive electrical stimulation of peripheral nerves for the management of tremor. J. Neurol. Sci., 2022, vol. 435, article no. 120195. DOI: 10.1016/j.jns.2022.120195.

Latorre, A., Hallett, M., Deuschl, G. & Bhatia, K. P. The MDS consensus tremor classification: The best way to classify patients with tremor at present. J. Neurol. Sci., 2022, vol. 435, article no. 120191. DOI: 10.1016/j.jns.2022.120191.

Jackson, J. Specific treatment techniques. Physical Management in Neurological Rehabilitation (Second Edition). Elsevier Health Sciences, 2004, pp. 393-413.

Enoka, M. R., Amiridis, I. G. & Duchateau, J. Electrical Stimulation of Muscle: Electrophysiology and Rehabilitation. Physiology, 2020, vol. 35, iss. 1, pp. 40-56. DOI: 10.1152/physiol.00015.2019.

Malygin, A. V. Opredeleniye optimal'nykh paramet-rov transkranial'noy elektrostimulyatsii na osnove matematicheskoy modeli neyronnykh struktur [Determination of the optimal parameters of transcranial electrical stimulation based on a mathematical model of neural structures]. Meditsinskiye komp'yuternyye tekhnologii – «Medical computer technologies», 2009, vol. 5, pp. 25-32. (In Russian).

Yeroshenko, O. & Prasol, I. Simulation of the electrical signal of the muscles to obtain the electromiosignal spectrum. Technology Audit and Production Reserves, 2022, vol. 2, no. 2(64), pp. 38-43. DOI: 10.15587/2706-5448.2022.254566.

Yeroshenko, O., Prasol, I. & Suknov, M. Modeling of electrostimulation characteristics to determine the optimal amplitude of current stimuli. Radioelectronic and Computer Systems, 2022, no. 2, pp. 191-199. DOI: 10.32620/reks.2022.2.15.

Prasol, I., Dovnar, O. & Yeroshenko, O. Method of diagnosing some diseases of the neuro-muscular system and features of data processing in software. Technology Audit and Production Reserves, 2023, vol. 1, no. 2(69), pp. 20-25. DOI: 10.15587/2706-5448.2023.273848.

Murillo-Escobar, J., Jaramillo-Munera, Y. E., Orrego-Metaute, D. A., Delgado-Trejos, E. & Cuesta-Frau, D. Muscle fatigue analysis during dynamic contractions based on biomechanical features and Permutation Entropy. Mathematical Biosciences and Engineering, 2020, vol. 17, iss. 3, pp. 2592-2615. DOI: 10.3934/mbe.2020142

Zhao, S., Mehta, A. & Zhao, M. Biomedical applications of electrical stimulation. Cell Mol Life Sci., 2020, vol. 77, no. 14, pp. 2681-2699. DOI: 10.1007/s00018-019-03446-1.

Prasol, I., Dovnar, O. & Yeroshenko, O. Method of Diagnostic Parameters Analysis and Software Features. IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 2022, pp. 1-4. DOI: 10.1109/KhPIWeek57572.2022.9916500.

Álvarez, D. M.-C., Serrano-Muñoz, D., Fernández-Pérez, J. J., Gómez-Soriano, J. & Avendaño-Coy, J. Effect of Percutaneous Electric Stimulation with High‐Frequency Alternating Currents on the Sensory-Motor System of Healthy Volunteers: A Double-Blind Randomized Controlled Study. Journal of Clinical Medicine, 2022, vol. 11, iss. 7, article no. 1832. DOI: 10.3390/jcm11071832.

Jung, J., Lee, D.-W., Son, Y. K., Kim, B. S., Shin, H. C. Volitional EMG Estimation Method during Functional Electrical Stimulation by Dual-Channel Surface EMGs. Sensors, 2021, vol. 21, iss. 23, article no. 8015. DOI: 10.3390/s21238015.

Fedorchenko, V., Prasol, I. & Yeroshenko, O. Information Technology For Identification Of Electric Stimulating Effects Parameters. CEUR Workshop Proceedings, 2021, vol. 3200, pp. 189-195. Available at: https://ceur-ws.org/Vol-3200/paper26.pdf. (accessed Jan. 12 2023).

Grosprêtre, S. & Martin. A. H reflex and spinal excitability: methodological considerations. J. Neurophysiol, 2012, vol. 107, iss. 6, pp. 1649-1654. DOI: 10.1152/jn.00611.2011.

Yakovlev, S., Kartashov, O. & Podzeha, D. Mathematical Models and Nonlinear Optimization in Continuous Maximum Coverage Location Problem. Computation, 2022, vol. 10, iss. 7, article no. 119. DOI: 10.3390/computation10070119.

Yakovlev, S., Kartashov, O. & Mumrienko, A. Formalization and solution of the maximum area coverage problem using library Shapely for territory monitoring. Radioelectronic and Computer Systems, 2022, vol. 2, pp. 35-48. DOI: 10.32620/reks.2022.2.03.

Alefeld, G. & Mayer, G. Interval analysis: theory and applications. Journal of Computational and Applied Mathematics, 2000, vol. 121, iss. 1-2, pp. 421-464. DOI: 10.1016/S0377-0427(00)00342-3.

Mustafa, M., Stancu, A., Gutierrez, S. P., Codres, E. A. & Jaulin, L. Rigid Transformation Using Interval Analysis for Robot Motion Estimation. 20th International Conference on Control Systems and Computer Science, Bucharest, Romania, 2015, pp. 24-31, DOI: 10.1109/CSCS.2015.98.

Shary, S. P. On optimal solution of interval linear equations. SIAM Journal on Numerical Analysis, 1995, vol. 32, iss. 2, pp. 610-630. Available at: http://www.jstor.org/stable/2158414. (accessed Jan. 12 2023).

Hofer, E. P. & Rauh, A. Applications of interval algorithms in engineering. 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006), Duisburg, Germany, 2006, pp. 1-12, DOI: 10.1109/SCAN.2006.10.

Jolin, L., Kiefer, M., Didri, O. & Walter, E. Prikladnoy interval'nyy analiz [Applied interval analysis]. Izhevsk, Institute of Computer Research Publ., 2005. 468 p. (In Russian).

Shary, S. P. Solving the linear interval tolerance problem. Mathematics and Computers in Simulation, 1995, vol. 39, iss. 1-2, pp. 53-85. DOI: 10.1016/0378-4754(95)00135-K.

Norenkov, I. P., Zinoviev, P. A. & Buldakova, T. I. Algoritmy tsentrirovaniya na osnove lineynykh approksimatsiy [Algorithms for centering based on linear approximations]. Izvestiya vysshikh uchebnykh zavedeniy: Radioelektronika – «News of higher educational institutions: Radioelectronics», 1983, no. 2(6), pp. 14-18. (In Russian).




DOI: https://doi.org/10.32620/reks.2023.2.02

Refbacks

  • There are currently no refbacks.