Autonomous flight insurance method of unmanned aerial vehicles Parot Mambo using semantic segmentation data
Abstract
Keywords
Full Text:
PDFReferences
Agha, A., Otsu, K., Morrell, B., Fan, D.D., Thakker, R., Santamaria-Navarro, A., Kim, S.-K. et al. Quest for Robotic Autonomy in Challenging Environments; An Overview of TEAM CoSTAR’s Solution at Phase I and II of DARPA Subterranean Challenge. ArXiv, 2021, pp.1-77. DOI: 10.48550/arXiv.2103.11470.
Parrot Software Development Kit RCS. PARROT DRONES SAS PARIS, 2021. 84 p. Available at: https://www.parrot.com/assets/s3fs-public/2022-01/whitepaperanafiai.pdf (accessed 27 June 2022).
Tello. SDK 2.0. Ryze Tech Support, 2018. 8 p. Available at: https://dl-cdn.ryzerobotics.com/down loads/Tello/Tello%20SDK%202.0%20User%20Guide.pdf. (accessed 27 June 2022).
Tello. SDK 3.0. Ryze Tech Support, 2021. 10 p. Available at: https://dl.djicdn.com/downloads/RoboMaster+TT/Tello_SDK_3.0_User_Guide_en.pdf. (accessed 27 June 2022).
Giernacki, W., Skwierczyński, M. et al. Crazyflie 2.0 quadrotor as a platform for research and education in robotics and control engineering. 22nd International Conference on Methods and Models in Automation and Robotics (MMAR). Miedzyzdroje, 2017, pp. 37-42. DOI: 10.1109/MMAR.2017.8046794.
Noordin, A., Basri, M. A. M., Mohamed, Z. Simulation and experimental study on PID control of a quadrotor MAV with perturbation. Bulletin of Electrical Engineering and Informatics, 2020, vol. 9, no. 5, pp. 1811-1818. DOI: 10.11591/eei.v9i5.2158.
Ryze Tello Drone Support from MATLAB. Access mode: https://www.mathworks.com/hardware-support/tello-drone-matlab.html (accessed 27 June 2022).
Chen, S., Zhou, W., Yang, A.-S., Chen, H., Li, B., Wen, C.-Y. An End-to-End UAV Simulation Platform for Visual SLAM and Navigation. Aerospace, 2022, vol. 9 (2), no. 48. DOI: 10.3390/aerospace9020048.
Roggi, G., Meraglia, S., Lovera, M. Leonardo Drone Contest 2021: Politecnico di Milano team architecture. International Conference on Unmanned Aircraft Systems (ICUAS). Dubrovnik, Croatia 2022, pp. 676-685. DOI: 10.1109/ICUAS54217.2022.9836103.
Aguilar, W. G., Morales, S. G. 3D environment mapping using the Kinect V2 and path planning based on RRT algorithms. Electronics, 2016, vol. 5, no. 4. pp. 70-87. DOI:10.3390/electronics5040070.
Casado, R., Bermúdez, A. Framework for Developing Autonomous Drone Navigation Systems. Electronics, 2021, vol. 10, no. 7. DOI: 10.3390/electronics10010007.
Naumenko, I., Myronenko, M., Savchenko, T. Information-extreme machine training of on-board recognition system with optimization of RGB-component digital images. Radioelectronic and Computer Systems, 2021, no. 4, pp. 59-70. DOI: 10.32620/reks.2021.4.05.
Sarkar, S., Totaro, M. W., Elgazzar, K. Intelligent drone-based surveillance: application to parking lot monitoring and detection. Unmanned Systems Technology XXI, article no. 11021, pp. 13-19. DOI: 10.1117/12.2518320.
Dragomir, M., Maer, V.-M., Buşoniu, L. The Co4AIR Marathon – A Matlab Simulated Drone Racing Competition. 2022 International Conference on Unmanned Aircraft Systems (ICUAS). Dubrovnik, 2022, pp. 1219-1226. DOI: 10.1109/ICUAS54217.2022.9836233.
Kadhim, E. H., Abdulsadda, A. T. Mini Drone Linear and Nonlinear Controller System Design and Analyzing. Journal of Robotics and Control (JRC), 2022, vol. 3, no. 2, pp. 212-218. DOI: 10.18196/jrc.v3i2.14180.
Ceppi, P. Model-based Desi gn of a Line-tracking Algorithm for a Low-cost Mini Drone through Vision-based Control. Thesis for the degree of Master of Science. Turin, 2021. 163 p. Available at: https://webthesis.biblio.polito.it/16018/1/tesi.pdf (accessed 12 June 2022).
Akhloufi, M. A., Arola, S., Bonnet, A. Drones Chasing Drones: Reinforcement Learning and Deep Search Area Proposal. Drones, 2019, vol. 3, no. 3, article no. 58, pp 1-14. DOI: 10.3390/drones3030058.
Chen, B., Hua, C., Li, D., He, Y., Han, J. Intelligent Human – UAV Interaction System with Joint Cross-Validation over Action – Gesture Recognition and Scene Understanding. Applied Sciences, 2019, vol. 9, iss. 16, article no. 3277. DOI: 10.3390/app9163277.
Santhiya, R., GeethaPriya, C. Machine Learning Techniques for Intelligent Transportation Systems-An overview. 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). Kharagpur, 2021, pp. 1-7. DOI: 10.1109/ICCCNT51525.2021.9579970.
Girisha, S., Manohara Pai, M. M., Verma, U., Pai, R. M. Semantic segmentation of UAV aerial videos using convolutional neural networks. IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). Sardinia, 2019, pp. 21-27. DOI: 10.1109/AIKE.2019.00012.
Lyu, Y., Vosselmana, G., Xia, G.-S., Yilmazc, A., Ying Yang, M. UAVid: A semantic segmentation dataset for UAV imagery. ISPRS journal of photogrammetry and remote sensing, 2020, vol. 165, pp. 108-119. DOI: 10.1016/j.isprsjprs.2020.05.009.
Bartolomei, L., Teixeira, L., Chli, M. Perception-aware path planning for UAVs using semantic segmentation. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, 2020, pp. 5808-5815. DOI: 10.1109/IROS45743.2020.9341347.
Patel, M. J., Kothari, A.M., Koringa, H. P., A novel approach for semantic segmentation of automatic road network extractions from remote sensing images by modified UNet. Radioelectronic and Computer Systems, 2022, no. 3, pp. 161-173. DOI: 10.32620/reks.2022.3.12
Kritskiy, D., Pohudina, O. Object recognition to refine drone positioning. IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT), Zbarazh, Ukraine, 2020, pp. 82-85. DOI: 10.1109/CSIT49958.2020.9321945.
DOI: https://doi.org/10.32620/reks.2023.1.12
Refbacks
- There are currently no refbacks.