Methodology for the development and application of clinical decisions support information technologies with consideration of civil-legal grounds
Abstract
Keywords
Full Text:
PDFReferences
Ghorayeb, A., Darbyshire, J., Wronikowska, M., Watkinson, P. Design and validation of a new Healthcare Systems Usability Scale (HSUS) for clinical decision support systems: a mixed-methods approach. BMJ Open, 2023, vol. 13, iss. 1, article no. e065323. DOI: 10.1136/bmjopen-2022-065323.
Strilets, V., Donets, V., Ugryumov, M., Artiuch, S., Zelenskyi, R., Goncharova, T. Agent-oriented data clustering for medical monitoring. Radioelectronic and Computer Systems, 2022, no. 1, pp. 103-114. DOI: 10.32620/reks.2022.1.08.
Ostermann, T. Information Technology and Integrative Medicine: Intimate Enemies or In-Team Mates? Journal of Alternative and Complementary Medicine, 2021, vol. 27, iss. 11, pp. 897-898. DOI: 10.1089/acm.2021.29100.tos.
Mygal, V., Mygal, G., Mygal, S. Transdisciplinary convergent approach - human factor. Radioelectronic and Computer Systems, 2021, no. 4, pp. 7-21. DOI: 10.32620/reks.2021.4.01.
Zayas-Cabán, T., Chaney, K., Rogers, C., Denny, J., Jon White, P. Meeting the challenge: Health information technology's essential role in achieving precision medicine. Journal of the American Medical Informatics Association, 2021, vol. 28, iss. 6, pp. 1345-1352. DOI: 10.1093/jamia/ocab032.
Shevchenko, I., Vasyliev, D., Prytchyn, S., Samoilov, A. Business processes monitoring based on fuzzy cognitive maps. Radioelectronic and Computer Systems, 2022, no. 3, pp. 110-120. DOI: 10.32620/reks.2022.3.08.
Meunier, P.-Y., Raynaud, C., Guimaraes, E., Gueyffier, F., Letrilliart, L. Barriers and Facilitators to the Use of Clinical Decision Support Systems in Primary Care: A Mixed-Methods Systematic Review. Annals of Family Medicine, 2023, vol. 21, iss. 1, pp. 57-69. DOI: 10.1370/afm.2908.
Naiseh, M., Al-Thani, D., Jiang, N., Ali, R. How the different explanation classes impact trust calibration: The case of clinical decision support systems. International Journal of Human Computer Studies, 2023, vol. 169, article no. 102941. DOI: 10.1016/j.ijhcs.2022.102941.
Marcilly, R., Colliaux, J., Robert, L., Pelayo, S., Beuscart, J.-B., Rousselière, C., Décaudin, B. Improving the usability and usefulness of computerized decision support systems for medication review by clinical pharmacists: A convergent, parallel evaluation. Research in Social and Administrative Pharmacy, 2023, vol. 19, iss. 1, pp. 144-154. DOI: 10.1016/j.sapharm.2022.08.012.
Samiullah, Md., Kar, P. C., Islam, Md. S., Alam, Md. T., Ahmed, C. F. Dr. AI: A Heterogeneous Clinical Decision Support System for Personalised Health Care. Lecture Notes in Networks and Systems, 2023, vol. 464, pp. 313-320. DOI: 10.1007/978-981-19-2394-4_29.
Zikos, D. Conceptual design principles for data-driven clinical decision support systems (CDSS): Developing useful and relevant CDSS. Health Informatics and Patient Safety in Times of Crisis, 2022, pp. 154-174. DOI: 10.4018/978-1-6684-5499-2.ch009.
Zhou, Y.-L., Shi, Q.-Y., Chen, X.-Y., Li, S.-Y., Shen, B.-R. Ontologies Applied in Clinical Decision Support Systems for Diabetes. Journal of Sichuan University. Medical science edition, 2023, vol. 54, iss. 1, pp. 208-216. DOI: 10.12182/20220860201.
Yan, J., Tian, J., Yang, H., Han, G., Liu, Y., He, H., Han, Q., Zhang, Y. A clinical decision support system for predicting coronary artery stenosis in patients with suspected coronary heart disease. Computers in Biology and Medicine, 2022, vol. 151, article no. 106300. DOI: 10.1016/j.compbiomed.2022.106300.
Zhou, G., Haihong, E., Kuang, Z., Tan, L., Xie, X., Li, J., Luo, H. Clinical decision support system for hypertension medication based on knowledge graph. Computer Methods and Programs in Biomedicine, 2022, vol. 227, article no. 107220. DOI: 10.1016/j.cmpb.2022.107220.
Ingraham, N., Jones, E., King, S., Dries, J., Phillips, M., Loftus, T., Evans, H. L., Melton, G. B., Tignanelli, C. Re-Aiming Equity Evaluation in Clinical Decision Support: A Scoping Review of Equity Assessments in Surgical Decision Support Systems. Annals of Surgery, 2023, vol. 277, iss. 3, pp. 359-364. DOI: 10.1097/SLA.0000000000005661.
Kastrup, N., Bjerregaard, H., Laursen, M., Valentin, J. B., Johnsen, S. P., Jensen, C. An AI-based patient-specific clinical decision support system for OA patients choosing surgery or not: study protocol for a single-centre, parallel-group, non-inferiority randomised controlled trial. Trials, 2023, vol. 24, iss. 1, article no. 24. DOI: 10.1186/s13063-022-07039-5.
Calvo-Cidoncha, E., Camacho-Hernando, C., Feu, F., Pastor-Duran, X., Codina-Jané, C., Lozano-Rubí, R. OntoPharma: ontology based clinical decision support system to reduce medication prescribing errors. BMC Medical Informatics and Decision Making, 2022, vol. 22, iss. 1, article no. 238. DOI: 10.1186/s12911-022-01979-3.
Prasad, J., Mallikarjunaiah, D., Shetty, A., Gandedkar, N., Chikkamuniswamy, A., Shivashankar, P. Machine Learning Predictive Model as Clinical Decision Support System in Orthodontic Treatment Planning. Dentistry Journal, 2023, vol. 11, iss. 1, article no. 1. DOI: 10.3390/dj11010001.
Lin, X., Lei, Y., Chen, J., Xing, Z., Yang, T., Wang, O., Wang, C. A Case-Finding Clinical Decision Support System to Identify Subjects with Chronic Obstructive Pulmonary Disease Based on Public Health Data. Tsinghua Science and Technology, 2023, vol. 28, iss. 3, pp. 525-540. DOI: 10.26599/TST.2022.9010010.
Chou, Y.-T., Lin, C.-T., Chang, T.-A., Wu, Y.-L., Yu, C.-E., Ho, T.-Y., Chen, H-Y., Hsu, K.-C., Kuang-Sheng Lee, O. Development of artificial intelligence-based clinical decision support system for diagnosis of meniscal injury using magnetic resonance images. Biomedical Signal Processing and Control, 2023, vol. 82, article no. 104523. DOI: 10.1016/j.bspc.2022.104523.
Sunjaya, A., Ansari, S., Jenkins, C. A systematic review on the effectiveness and impact of clinical decision support systems for breathlessness. Primary Care Respiratory Medicine, 2022, vol. 32, iss. 1, article no. 29. DOI: 10.1038/s41533-022-00291-x.
Hoyos, W., Aguilar, J., Toro, M. A clinical decision-support system for dengue based on fuzzy cognitive maps. Health Care Management Science, 2022, vol. 25, iss. 4, pp. 666-681. DOI: 10.1007/s10729-022-09611-6.
Albin, J., Lazarus, J., Hysell, K., Rubins, D., Germaine, L., Dugdale, C., Heller, H., Hohmann, E., Baugh, J., Shenoy, E. Development and implementation of a clinical decision support system tool for the evaluation of suspected monkeypox infection. Journal of the American Medical Informatics Association, 2022, vol. 29, iss. 12, pp. 2124-2127. DOI: 10.1093/jamia/ocac151.
Roller, R., Mayrdorfer, M., Duettmann, W., Naik, M., Schmidt, D., Halleck, F., Hummel, P., Burchardt, A., Möller, S., Dabrock, P., Osmanodja, B., Budde, K. Evaluation of a clinical decision support system for detection of patients at risk after kidney transplantation. Frontiers in Public Health, 2022, vol. 1025, article no. 979448. DOI: 10.3389/fpubh.2022.979448.
Chen, C.-S., Huang, T.-S., Lee, S. S.-J., Chien, F.-C., Yang, C.-H., Li, S.-S., Hsu, C.-J., Sy, C., Wu, K.-S. Using a Knowledge-Based Clinical Decision Support System to Reduce the Time to Appropriate Antimicrobial Therapy in Hospitalized Patients With Bloodstream Infections: A Single-Center Observational Study. Open Forum Infectious Diseases, 2022, vol. 9, iss. 101, article no. ofac522. DOI: 10.1093/ofid/ofac522.
Hovorushchenko, T., Hnatchuk, Ye., Herts, A., Onyshko, O. Intelligent Information Technology for Supporting the Medical Decision-Making Considering the Legal Basis. CEUR-WS, 2021, vol. 2853, pp. 72-82. Available at: https://ceur-ws.org/Vol-2853/paper4.pdf (accessed 12.01.2023).
Hovorushchenko, T., Herts, A., Hnatchuk, Ye. Concept of Intelligent Decision Support System in the Legal Regulation of the Surrogate Motherhood. CEUR-WS, 2019, vol. 2488, pp. 57-68. Available at: https://ceur-ws.org/Vol-2488/paper5.pdf (accessed 12.01.2023).
Hovorushchenko, T., Hnatchuk, Ye., Herts, A., Moskalenko, A., Osyadlyi, V. Theoretical and Applied Principles of Information Technology for Supporting Medical Decision-Making Taking into Account the Legal Basis. CEUR-WS, 2021, vol. 3038, pp. 172-181. Available at: https://ceur-ws.org/Vol-3038/paper12.pdf (accessed 12.01.2023).
Hovorushchenko, T., Moskalenko, A., Osyadlyi, V. Methods of Medical Data Management Based on Blockchain Technologies. Journal of Reliable Intelligent Environments, 2022. DOI: 10.1007/s40860-022-00178-1.
Hovorushchenko, T., Herts, A., Hnatchuk, Ye., Sachenko, O. Supporting the decision-making about the possibility of donation and transplantation based on civil law grounds. Advances in Intelligent Systems and Computing, 2021, vol. 1246, pp. 357-376. DOI: 10.1007/978-3-030-54215-3_23.
Mahsa Dehghani, S., Taha, S.-S., Samad Shams, V., Peyman, R.-H. Decision support system for triage management: A hybrid approach using rule-based reasoning and fuzzy logic. International Journal of Medical Informatics, 2018, vol. 114, pp. 35-44. DOI: 10.1016/j.ijmedinf.2018.03.008.
Berge, G., Granmo, O., Tveit, T., Munkvold, B., Ruthjersen, A., Sharma, J. Machine learning-driven clinical decision support system for concept-based searching: a field trial in a Norwegian hospital. BMC Medical Informatics and Decision Making, 2023, vol. 23, iss. 1, article no. 5. DOI: 10.1186/s12911-023-02101-x.
DOI: https://doi.org/10.32620/reks.2023.1.03
Refbacks
- There are currently no refbacks.