On strange images with application to lossy image compression
Abstract
Keywords
Full Text:
PDFReferences
Zappavigna, M. Social media photography: construing subjectivity in Instagram images. Visual Communication, 2016, vol. 15, no. 3, pp. 271–292. DOI: 10.1177/1470357216643220.
Kussul, N., Lavreniuk, M., Shelestov, A., Skakun, S. Crop inventory at regional scale in Ukraine: Developing in season and end of season crop maps with multi-temporal optical and SAR satellite imagery. European Journal of Remote Sensing, 2018, vol. 51, no. 1, pp. 627-636. DOI: 10.1080/22797254.2018.1454265.
Grgic, M., Kunt, M., Mrak, M. High-Quality Visual Experience: Creation, Processing and Interactivity of High-Resolution and High-Dimensional Video Signals. Springer Berlin, Heidelberg Publ., 2010. 550 p. DOI: 10.1007/978-3-642-12802-8
Hussain, A. J., Al-Fayadh, A., Radi, N. Image compression techniques: A survey in lossless and lossy algorithms. Neurocomputing, 2018, vol. 300, pp. 44-69. DOI: 10.1016/j.neucom.2018.02.094.
Sayood, K. Introduction to data compression. 5th Edition, Morgan Kaufmann, San Francisco, 2017. 790 p.
Blanes, I., Magli, E., Serra-Sagrista, J. A tutorial on image compression for optical space imaging Systems. IEEE Geoscience and Remote Sensing Magazine, 2014, vol. 2, no. 3, pp. 8-26. DOI: 10.1109/MGRS.2014.2352465.
Oh, H., Bilgin, A., Marcellin, M. Visually lossless JPEG 2000 for remote image browsing. Information, 2016, vol. 7, no. 3, article no. 45. DOI: 10.3390/info7030045.
Bondžulić, B., Stojanović, N., Petrović, V., Pavlović, B., Miličević, Z. Efficient prediction of the first just noticeable difference point for JPEG compressed images. Acta Polytechnica Hungarica, 2021, vol. 18, no. 8, pp. 201-220. DOI: 10.12700/APH.18.8.2021.8.11.
Zabala, A., Pons, X. et al. Effects of JPEG and JPEG2000 lossy compression on remote sensing image classification for mapping crops and forest areas. IEEE International Symposium on Geoscience and Remote Sensing, 2006, pp. 790-793. DOI: 10.1109/IGARSS.2006.203.
Li, F., Krivenko, S., Lukin, V. Two-step providing of desired quality in lossy image compression by SPIHT. Radioelectronic and computer systems, 2020, no. 2(94), pp. 22-32. DOI: 10.32620/reks.2020.2.02.
Ozah, N., Kolokolova, A. Compression improves image classification accuracy. Proceedings of Canadian Conference on Artificial Intelligence. Lecture Notes in Computer Science, Springer, Cham, 2019, vol. 11489, pp. 525-530. DOI: 10.1007/978-3-030-18305-9_55.
Doss, S., Pal, S., Akila, D. et al. Satellite image remote sensing for identifying aircraft using SPIHT and NSCT. Journal of Critical Reviews, 2020, vol. 7, no. 5, pp. 631-634. DOI: 10.31838/jcr.07.05.130.
Zemliachenko, A., Ponomarenko, N., Lukin, V. et al. Still image/video frame lossy compression providing a desired visual quality. Multidimensional Systems and Signal Processing, 2016, vol. 27, no. 3, pp. 697-718. DOI: 10.1007/s11045-015-0333-8.
Lukin, V., Vasilyeva, I., Krivenko, S. et al. Lossy compression of multichannel remote sensing images with quality control. Remote Sensing, 2020, vol. 12, no. 22, article no. 3840. DOI: 10.3390/rs12223840.
Yang, K., Jiang, H. Optimized-SSIM based quantization in optical remote sensing image compression. Proceedings of Sixth International Conference on Image and Graphics, 2011, pp. 117-122. DOI: 10.1109/ICIG.2011.38.
Bondžulić, B., Pavlović, B., Stojanović, N., Petrović, V. Picture-wise just noticeable difference prediction model for JPEG image quality assessment. Vojnotehnički glasnik / Military Technical Courier, 2022, vol. 70, no. 1, pp. 62-84. DOI: 10.5937/vojtehg70-34739.
Llinàs, F. A. Model-based JPEG2000 rate control methods, PhD Thesis. Universitat Autònoma de Barcelona, 2006. 165 p.
Jeong, Y. W. et al. Rate distortion optimization encoding system and method of operating the same, US Patent, Patent No. 10,742,995 B2, 2020.
Ortega, A., Ramchandran, K. Rate-distortion methods for image and video compression. IEEE Signal Processing Magazine, 1998, vol. 15, no. 6, pp. 23-50. DOI: 10.1109/79.733495.
Li, F., Lukin,V., Liu, X. Strange images with non-monotonous rate-distortion curves in lossy image compression. Proceedings of Fifth International Conference on Information Systems and Computer Aided Education, 2022, pp. 11-15. DOI: 10.1109/ICISCAE55891.2022.9927685.
Kovalenko, B., Lukin, V., Kryvenko, S., Vozel, B. Prediction of parameters in optimal operation point for BPG-based lossy compression of noisy images. Ukrainian Journal of Remote Sensing, 2022, vol. 9, no. 2, pp. 4-12. DOI: 10.36023/ujrs.2022.9.2.212.
Corchs, S. E., Ciocca, G., Bricolo, E., Gasparini, F. Predicting complexity perception of real world images. PLoS ONE, 2016, vol. 11, no. 6, article no. e0157986. DOI: 10.1371/journal.pone.0157986.
Jin, L. et al. Statistical study on perceived JPEG image quality via MCL-JCI dataset construction and analysis. Proceedings of IS&T International Symposium on Electronic Imaging : Image Quality and System Performance XIII, 2016, vol. 28, article no. art00026, pp. 1-9. DOI: 10.2352/ISSN.2470-1173.2016.13.IQSP-222.
Makarichev, V., Lukin, V., Brysina, I. On estimates of coefficients of generalized atomic wavelets expansions and their application to data processing. Radioelectronic and computer systems, 2020, no. 1(93), pp. 44-57. DOI: 10.32620/reks.2020.1.05.
Melnyk, R., Tushnytskyy, R., Kvit, R. Cloudiness Images Multilevel Segmentation by Piecewise Linear Approximation of Cumulative Histogram. International Journal of Computing, 2020, no. 19(2), pp. 199-207. DOI: 10.47839/ijc.19.2.1762.
DOI: https://doi.org/10.32620/reks.2022.4.11
Refbacks
- There are currently no refbacks.