Model and algorithm of creation of silicon photodiod with high sensitivity in the middle infrared area of the spectrum
Abstract
Keywords
Full Text:
PDFReferences
Rogalski, A. Infrared and terahertz detectors. Boca Raton, CRC Press Publ. 3rd ed., 2019. 1066 p. DOI: 10.1201/b21951.
Bao, C., Chen, Z., Fang, Y., Wei, H., Deng, Y., Xiao, X., Li, L., Huang, J. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Advanced materials, 2017, vol. 29, iss. 39, pp. 1–7. DOI: 10.1002/adma.201703209.
Li, C. , Wang, H. , Wang, F. , Li, T., Xu, M., Wang, H., Wang, Z., Zhan, X., Hu, W, Shen, L. Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light, science & applications 2020, vol. 9, article no. 31, pp. 1–8. DOI: 10.1038/s41377-020-0264-57.
Zhang, T., Liu, B., Ahmad, W., Xuan, Y., Ying, X., Liu, Z., Chen, Z., Li, S. Optical and electronic properties of femtosecond laser-induced sulfur-hyperdoped silicon N+/P photodiodes. Nanoscale research letters, 2017, vol. 12, article no. 522, pp. 1–4. DOI: 10.1186/s11671-017-2287-2.
Sipauba Carvalho da Silva, Y. R., Kuroda, R., Sugawa, S. Highly robust silicon ultraviolet selective radiation sensor using differential spectral response method. Sensors, 2019, vol. 19, no. 12, pp. 1–14. DOI: 10.3390/s19122755.
Marnadu, R., Chandrasekaran, J., Maruthamuthu, S., Balasubramani, V., Vivek, P., Suresh, R. Ultra-high photoresponse with superiorly sensitive metal-insulator-semiconductor (MIS) structured diodes for UV photodetector application. Applied Surface Science, 2019, vol. 480, pp. 308–322. DOI: 10.1016/j.apsusc.2019.02.214.
Guo, F., Xiao, Z., Huang, J. Fullerene photodetectors with a linear dynamic range of 90 dB enabled by a cross-linkable buffer layer. Advanced Optical Materials, 2013, vol. 1, iss. 4, pp. 289–294. DOI: 10.1002/adom.201200071.
De Sanctis, A., Jones, G. F., Wehenkel, D. J., Bezares, F., Koppens, F. H. L., Craciun, M. F., Russo, S. Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors. Science Advances, 2017, vol. 3, iss. 5, pp. 1–8. DOI: 10.1126/sciadv.1602617.
Dobrovolsky, Yu. G., Andreeva, O. P., Gavrilyak, M. S., Pidkamin, L. J., Prokhorov, G. V. p-i-n Photodiode Based on Silicon with Short Rise Time. Journal of nano- and electronic physics, 2018, vol. 10, no 4, pp. 04019-1–04019-5. DOI: 10.21272/jnep.10(4).04019.
Dobrovolsky, Yu. G., Lipka, V. M., Strebezhev, V. V., Sorokatyi, Yu. O., Sorokatyi, M. O., Andreeva, O. P. Photodiode on the basis of epitaxial phosphate gallium with increased sensitivity at a wavelength of 254 nm. Informatyka, automatyka, pomiary w gospodarce i ochronie środowiska, 2020, vol. 10, no. 1, pp. 36–39. DOI: 10.35784/iapgos.910.
Danilyuk, A. I., Dobrovolskiy, Yu. G. Estimation of frequency characteristics of photodiode determined by motion of charge carriers in the space-charge region. Semiconductor physics, quantum electronics & optoelectronics, 2006, vol. 9, no. 3. pp. 40–43. Available at: http://journal-spqeo.org.ua/n3_2006/v9n3-p040-043.pdf. (аccessed 12.05.2022).
Dobrovolsciy, Yu. G., Perevertaylo, V. L., Shabashcevich, B. G., Pidkamin, L. J. Clarifying coverages on the basis of tapes SnO2, SiO 2, Si3N4 for photodiodes of ultraviolet and visible range. Proceedings of the SPIE. Vol. 7388: Ninth international conference on correlation optics. Chernivsti, 2009, pp. 738815-1– 1738815-6. DOI: 10.1117/12.855112.
Solovan, M. M., Brus, V. V., Pidkamin, L. J.,. Maryanchuk, P. D. Structural parameters and polarization properties of TiN thin films prepared by reactive magnetron sputtering. Proceedings of the SPIE: Twelfth international conference on correlation optics. Chernivsti, 30 nov. 2015,vol. 9809, рр. 980910-1–980910-8. DOI: 10.1117/12.2228981.
Malyshev, S. A., Chizh, A. L., Vasileuski, Ju. G. Dvumernoe modelirovanie p−i−n-fotodiodov bol'shoj ploshhadi na osnove InGaAs/InP [2D modeling of large area InGaAs/InP p−i−n photodiodes]. Fizika i tehnika poluprovodnikov − Semiconductors, 2006, vol. 40, no. 9, pp. 1144-1149. Available at: http://elibrary.lt/resursai/Uzsienio%20leidiniai/ioffe/ftp/2006/09/ftp4009_23.pdf. (аccessed 12.05.2022).
Korytko, N. N., Zalesskij, V. B., Malyshev, V. S., Khatko, V. V. Modelirovanie konstrukcii lavinnyh fotodiodov s ohrannymi oblastjami dlja registracii malomoshhnyh svetovyh potokov. [Simulation of avalanche photodiode construction with guard areas] Pribory i metody izmerenij – Devices and Methods of Measurements, 2011, no 1 (2), pp. 32–39. DOI: 10.21122/2220-9506-2011-0-1-19-22.
Shmatko, O., Volosyuk, V., Zhyla, S., Pavlikov, V., Ruzhentsev, N., Tserne, E., Popov, A., Ostroumov, I., Kuzmenko, N., Dergachov, K., Sushchenko, O., Averyanova, Y., Zaliskyi, M., Solomentsev, O., Havrylenko, O., Kuznetsov, B., Nikitina, T. Synthesis of the Optimal Algorithm and Structure of Contactless Optical Device for Estimating the Parameters of Statistically Uneven Surfaces. Radioelectronic and computer systems, 2021, no. 4, pp. 199–213. DOI: 10.32620/reks.2021.4.16.
Moiseenko, V., Golovko, О., Butenko, V., Trubchaninova, K. Modeling of Vehicle Movement in Computer Information-Control Systems. Trubchaninova Radioelectronic and Computer Systems, 2022, no. 1, pp. 36–49. DOI: 10.32620/reks.2022.1.03.
Ziarkash, A. W., Joshi, S. K., Stipčević, M., Ursin R. Comparative study of afterpulsing behavior and models in single photon counting avalanche photo diode detectors. Scientific reports, 2018, vol. 8. article no. 5076, pp. 1–8. DOI: 10.1038/s41598-018-23398-z.
Wang, Y. Chen, J., Xu, J., Li, X. Modeling of frequency-dependent negative differential capacitance in InGaAs/InP photodiode. Infrared physics & technology, 2018, vol. 89, pp. 41–45. DOI: 10.1016/j.infrared.2017.12.005.
Khan, U., Sarkar, M. Dynamic Capacitance Variations Due to Barrier Modulation in Pinned Photodiode of CMOS Image Sensor. IEEE transactions on electron devices, 2019, vol. 66, iss. 12, pp. 5202–5208. DOI: 10.1109/TED.2019.2947774.
Alaibakhsh, H., Karami M. A. A general compact pinned photodiode model capable of miniature PPD modeling. IEEE transactions on electron devices, 2021, vol. 68, iss. 6, pp. 2785–2790. DOI: 10.1109/TED.2021.3072023.
DOI: https://doi.org/10.32620/reks.2022.4.07
Refbacks
- There are currently no refbacks.