Information-extreme machine learning of a cyber attack detection system
Abstract
Keywords
Full Text:
PDFReferences
Iavich, M., Kuchukhidze, T., Lashvili, G., Gnatyuk, S. Hibrid quantum random number generator for cryptographic algorithms. Radioeleсtronic and computer systems, 2021, no. 4, pp. 103-118. DOI:10.32620/reks.2021.4.09.
Bhardwaj, A., Sapra, V. Security Incidents & Response Against Cyber Attacks. Springer, 2021. 250 p.
Intrusion Detection Systems Explained: 13 Best IDS Software Tools Reviewed. Available at: https://www.comparitech.com/net-admin/network-intrusion-detection-tools/ (accessed 21.05.2022).
Top 10 BEST Intrusion Detection Systems (IDS) [2021 Rankings]. Available at: https://www.softwaretestinghelp.com/intrusion-detection-systems/ (accessed 21.05.2022).
Best FREE Intrusion Detection Software in 2021. Available at: https://www.addictivetips.com/net-admin/intrusion-detection-tools/ (accessed 21.05.2022).
Toliupa, S., Nakonechnyi, V., Uspenskyi, O. Signature and statistical analyzers in the cyber attack detection system. Information Technology and Security, 2019, vol. 7, iss. 1(12), pp. 69-79.
Snehi, J. Diverse Methods for Signature based Intrusion Detection Schemes Adopted. International Journal of Recent Technology and Engineering, 2020, vol. 9, iss. 2, pp. 44-49.
Ananin, E., Kozhevnikova, I., Lysenko, A., Nikishova, A. Anomalies and intrusions detection methods. Problems of Sciense, 2016. no. 34 (76), pp. 48-50.
Manasi, G. Taxonomy of Anomaly Based Intrusion Detection System: A Review. International Journal of Scientific and Research Publications, 2012. vol. 2, iss. 12. Available at: http://www.ijsrp.org/research-paper-1212.php?rp=P12460. (accessed 21.05.2022).
Dua, S., Du, X. Data Mining and Machine Learning in Cybersecurity. 1st Edition. Auerbach Publications, 2011. 256 p.
Honglin, H. A Network Traffic Classification Method Using Support Vector Machine with Feature Weighted-degree. Journal of Digital Information Management, 2017, vol. 15(2), pp. 76-83.
Zimovets, V. I., Kalashnykova, N. I., Olada, D. E., Shamatrin, S. V. Functional diagnostic system for multichannel mine lifting machine working in factor cluster analysis mode. Journal of Engineering Sciences, 2020, vol. 7, no. 1, pp. E20–E27. DOI: 10.21272/jes.2020.7(1).e4.
Xu, G., Zong, Y., Yang, Z. Applied Data Mining. CRC Press, 2013. 284 p.
Bai, J., Chen, Y. A Deep Neural Network Based on Classification of Traffic Volume for Short-Term Forecasting. Mathematical Problems in Engineering, 2019, аrticle id 6318094. DOI: 10.1155/2019/6318094.
Abbasi, M., Shahraki, A., Taherkordi, A. Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey. Computer Communications, 2021, vol. 170, pp. 19-41.
Kotecha, K., Verma, R. et al. Enhanced Network Intrusion Detection System. Sensors, 2021, vol. 21, iss. 23, article id 7835. DOI: 10.3390/s21237835.
Moskalenko, V. V., Korobov, A. G. Extreme algorithm of the system for recognition of objects on the terrain with optimization parameter feature extraction. Radio Electronics, Computer Science, Control, 2017, no 2, pp. 38-45.
Balyk, A., Karpinski, M., Naglik, A., Shangytbayeva, G., Romanets, I. Using graphic network simulator for ddos attacks simulation. International Journal of Computing, 2017, vol. 16, iss. 4, pp. 219-225. DOI: 10.47839/ijc.16.4.910.
Dovbysh, A. S., Moskalenko, V. V., Rizhova, A. S. Information-Extreme Method for Classification of Observations with Categorical Attributes. Cybernetics and Systems Analysis, 2016, vol. 52, iss. 2, pp. 45-52. DOI: 10.1007/s10559-016-9818-1.
Dovbysh, A. S., Budnyk, M. M., Piatachenko, V. Yu., Myronenko, M. I. Information-Extreme Machine Learning of On-Board Vehicle Recognition System. Cybernetics and Systems Analysis, 2020, vol. 56, iss. 4, pp. 534-543. DOI: 10.1007/s10559-020-00269-y.
Dovbysh, A. S., Rudenko, M. S. Information-extreme learning algorithm for a system of recognition of morphological images in diagnosing oncological pathologies. Cybernetics and Systems Analysis, 2014, vol. 50, iss. 1, pp. 157-163. DOI 10.1007/s10559-014-9603-y.
Machine Learning Repository. Available at: https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT (accessed 21.05.2022).
DOI: https://doi.org/10.32620/reks.2022.3.09
Refbacks
- There are currently no refbacks.