Business processes monitoring based on fuzzy cognitive maps
Abstract
Keywords
Full Text:
PDFReferences
Skobelev, P. O. Ontologija dejatel'nosti dlja situacionnogo upravlenija predprijatijami v real'nom vremeni [Ontology of activity for situational management of enterprises in real time]. Ontologiya proektirovaniya – Design ontology, 2012, no. 1(3), pp. 6-38.
Edwards, I., Kok, Kasper. Building a Fuzzy Cognitive Map from stakeholder knowledge: An Episodic, asynchronous approach. Current Research in Environmental Sustainability, 2021, vol. 3. DOI: 10.1016/j.crsust.2021.100053.
Kazeroni, M., Nguyen, P., Fayek, A. R. Prioritizing Construction Labor Productivity Improvement Strategies Using Fuzzy Multi-Criteria Decision Making and Fuzzy Cognitive Maps. Jorg Rothe, 2021, vol. 14, iss. 9, article no.254. DOI: 10.3390/a14090254.
Oksanich, I. G., Shevchenko, I. V., Krasnopol'skaya, Yu. A. Otobrazhenie opisaniya biznes-protsessa v operatsionnoe prostranstvo organizatsionno-tekhnicheskoi sistemy [Mapping the description of the business process to the operational space of the organizational and technical system]. Radіoelektronіka ta іnformatika – Radioelectronics & Informatics, 2019, no. 2(85), pp. 54-60. DOI: 10.30837/1563-0064.2(85).2019.184747.
Kosko, B. Fuzzy cognitive maps. International Journal of Man-Machine Studies, 1986, vol. 24, iss.1, pp. 65-75. DOI: 10.1016/S0020-7373(86)80040-2.
Gray, S. A., Zanre, E., Gray, S. R. J. Fuzzy cognitive maps as representations of mental models and group beliefs: theoretical and technical issues. Fuzzy Cognitive Maps for Applied Sciences and Engineering. Intelligent Systems Reference Library, Springer, Berlin, Heidelberg, 2014, vol. 54, pp. 29-48. DOI: 10.1007/978-3-642-39739-4_2.
Zbrishchak, S. G. Reshenie problemnykh situatsii v menedzhmente na osnove kollektivnykh kognitivnykh kart [Solving problem situations in management based on collective cognitive maps]. Ekonomika i upravlenie: problemy, resheniya – Economics and Management: Problems, Solutions, 2017, vol. 4, no. 3, pp. 235-245.
Poleto, T., Carvalho VDHd, Silva ALBd, Clemente TRN, Silva MM, Gusmão APHd, Costa APCS, Nepomuceno TCC. Fuzzy Cognitive Scenario Mapping for Causes of Cybersecurity in Telehealth Services. Healthcare, 2021, vol. 9, iss. 11, article no. 1504. DOI: 10.3390/healthcare9111504.
Vaščák, J., Pomšár, L., Papcun, P., Kajáti, E., Zolotová, I. Means of IoT and Fuzzy Cognitive Maps in Reactive Navigation of Ubiquitous Robots. Electronics, 2021, vol. 10, iss. 7, article no. 809. DOI: 10.3390/electronics10070809.
Petukhova, A., Fachada, N. Retail System Scenario Modeling Using Fuzzy Cognitive Maps. Information, 2022, vol. 13, iss. 5, article no.251. DOI: 10.3390/info13050251.
Romanenko, Victor D., Milyavskiy, Yuriy L., Reutov, Alexey A. Adaptive Control Method for Unstable Impulse Processes in Cognitive Maps Based on Reference Model. Journal of Automation and Information Sciences, 2015, vol. 47, iss. 3, pp. 11-23. DOI: 10.1615/jautomatinfscien.v47.i3.20.
Zgurowsky, Mikhail Z., Romanenko, Victor D., Milyavskiy, Yuriy L. Principles and Methods of Impulse Processes Control in Cognitive Maps of Complex Systems. Part 1. Journal of Automation and Information Sciences, 2016, vol. 48, iss. 3, pp. 36-45. DOI: 10.1615/jautomatinfscien.v48.i3.40.
Zgurowsky, Mikhail Z., Romanenko, Victor D., Milyavskiy, Yuriy L. Principles and Methods of Impulse Processes Control in Cognitive Maps of Complex Systems. Part II. Journal of Automation and Information Sciences, 2016, vol. 48, iss. 7, pp. 4-16. DOI: 10.1615/JAutomatInfScien.v48.i7.20.
Shevchenko, I. V., Vasyl`yev D. O. Zadacha pidtrymky pryynyattya rishen' pry keruvanni proyektamy u munitsypal'niy sferi ta peredumovy vykorystannya nechitkykh kohnityvnykh kart [The task of supporting decision-making in project management in the municipal sphere and the prerequisites for the use of fuzzy cognitive maps]. Visnyk Kremenchuts'koho natsional'noho universytetu imeni Mykhayla Ostrohrads'koho, Kremenchuk, KrNU Publ., 2022, no. 1, pp. 85-91. DOI: 10.32782/1995-0519.2022.1.11.
Stach, W., Kurgan, L., Pedrycz, W. Data-driven nonlinear Hebbian learning method for fuzzy cognitive maps. IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), 2008, pp. 1975-1981. DOI: 10.1109/FUZZY.2008.4630640.
DOI: https://doi.org/10.32620/reks.2022.3.08
Refbacks
- There are currently no refbacks.