Rational control of the temperature of vortex energy separator under destabilizing influence

Anatoliy Kulik, Kostiantyn Dergachov, Sergiy Pasichnik, Dmytro Sokol

Abstract


The object of study in this article is the formation process of a rational control of the temperature of a vortex energy separator under destabilizing influences. The subject matter of the article is the process of forming a dichotomous tree by two-digit predicates from diagnostic models a vortex energy-separator device as a rational control object when destabilizing influences appear, and its further recovery. The goal is to develop an analytical approach to the formation of digital algorithms for the rational control of cold and hot air flow temperatures of a vortex energy separator. The tasks are to study the features of the process in the vortex energy-separator device; to describe a rational control system of the vortex energy-separator device; to analyze the experimental characteristics of the vortex energy-separator device; to form linear mathematical models of the nominal mode of the vortex energy-separator device; to develop linear diagnostic models that describe the inoperable states of the vortex energy separator as a rational control object; to form logical signs of diagnosing using diagnostic models, to develop recovering algorithms for the vortex energy separator. The methods used are transfer functions, discrete state space, forming production rules, two-digit predicate equations, dichotomous trees, diagnosing and recovering the operability of dynamic objects. The following results were obtained: the vortex energy-separation process features analysis, the rational control system structure and function description, the experimental characteristics analysis, the development of mathematical models, diagnostic and recovering tool development for the emergency operation process of a vortex energy separator as a rational control object for a given destabilizing influence set. Conclusions. Scientific novelty is the development of an analytical approach to the development of rational control of the vortex separation process of the air flow under the significant influence of various kinds of destabilizing influences.

Keywords


Ranque-Hilsch vortex tube; vortex energy separator; rational control; destabilizing influences; linear mathematical models; predicate equations; diagnostic tool; recovering tool

Full Text:

PDF

References


Ranque, G. J. Experiments on Expansion in a Vortex with Simultaneous Exhaust of Hot Air and Cold Air. Le Journal de Physique et le Radium, 1933, vol. 4, no. 6, pp. 112-114.

Merkulov, A. P. Vikhrevoi effekt i ego primenenie v tekhnike [Vortex effect and its application in engineering]. Moscow, Mashinostroenie Publ., 1969. 185 p.

Kulik, A. S., Pasichnik, S. N., Sokol, D. V. Investigation of Stationary Processes in Vortex Energy Separator Through Its Computational Fluid Dynamics Model. Mathematical Modeling and Simulation of Systems : Selected Papers of 16th International Scientific-practical Conference, MODS, Chernihiv, June 28–July 01, 2021, pp. 105-114. DOI: 10.1007/978-3-030-89902-8_8.

Khalatov, A. A. Teoriya i praktika zakruchennykh potokov [Theory and practice of swirling flows]. Kyiv, Naukova dumka Publ., 1989. 192 p.

Kulik, A. S., Dzhulgakov, V. G.,Pasichnik, S. N. Aparatno-prohramnyy kompleks dlya doslidzhennya vykhrovoho efektu [Hardware and software complex for investigating the vortex effect]. Visnyk KhNTUSH – Messenger KhNTUSH, 2010, no. 102, pp. 85-87.

Rafiee, S. E., Sadeghiazad, M. M. Experimental and 3D CFD investigation on energy separation inside a convergent vortex tube air separator. Scientia Iranica, 2016, vol. 23, iss. 4, pp. 1753-1766. DOI: 10.24200/sci.2016.3923.

Kim, Y., Im, S., Han, J. A Study on the Application Possibility of the Vehicle Air Conditioning System Using Vortex Tube. Energies, 2020, vol. 13, no. 19, article no. 5227. DOI: 10.3390/en13195227.

Sagar Manmath Swami, Kunal Y. Bhavsar. Design and Development of a Cooling System for A Vaccine Container by using Vortex Tube Refrigeration. International journal of engineering research & technology (IJERT), 2022, vol. 11, no. 7, pp. 169-177. DOI: 10.17577/IJERTV11IS070093.

Fotso, B. E. M., Talawo, R. C., Feudjio Nguefack, M. C., Fogue, M. Modeling and thermal analysis of a solar thermoelectric generator with vortex tube for hybrid vehicle. Case Studies in Thermal Engineering, 2019, vol. 15, article no. 100515. DOI: 10.1016/j.csite.2019.100515.

Beaugendre, E., Lagrandeur, J., Cheayb, M., Poncet, S. Integration of vortex tubes in a trigenerative compressed air energy storage system. Energy Convesion and Management, 2021, vol. 240, article no. 114225. DOI: 10.1016/j.enconman.2021.114225.

Bazgir, A., Nabhani, N. Numerical investigation of the effects of geometrical parameters on the vortex separation phenomenon inside a Ranque-Hilsch vortex tube used as an air separator in a helicopter’s engine. Aviation, 2018, vol. 22, no. 1, pp. 13-23. DOI: 10.3846/aviation.2018.2414.

Lakshmanababu, R., Mahesh, D., Arun Pandyan, I., Ramachandran, M., Kurinjimalar Ramu. Exploring Various Control Systems and Its Application. Electrical and Automation Engineering, 2022, vol. 1, no. 1, pp. 40-46. DOI: 10.46632/eae/1/1/7.

Le, Q. D., Kang, H.-J. An Active Fault-Tolerant Control Based on Synchronous Fast Terminal Sliding Mode for a Robot Manipulator. Actuators, 2022, vol. 11, no. 7, article no. 195. DOI: 10.3390/act11070195.

Behrooz, F., Mariun, N., Marhaban, M., Mohd Radzi, M., Ramli, A. Review of Control Techniques for HVAC Systems—Nonlinearity Approaches Based on Fuzzy Cognitive Maps. Energies, 2018, vol. 11, no. 3, article no. 495. DOI: 10.3390/en11030495.

Kulik, A., Dergachov, K., Pasichnik, S., Sokol, D. Diagnostic models of inoperable states of the vortex energy separator device. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2022, no. 3(179), pp. 13-29. DOI: 10.32620/aktt.2022.3.02.

Ozirkovskyy, L., Volochiy, B., Shkiliuk, O., Zmysnyi, M., Kazan, P. Functional safety analysis of safety-critical system using state transition diagram. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2022, no. 2 (102), pp. 145-158. DOI: 10.32620/reks.2020.2.02.

Tyagi, S., Goyal, N., Kumar, A., Ram, M. Stochastic hybrid energy system modelling with component failure and repair. International Journal of System Assurance Engineering and Management, 2021. 11 p. DOI: 10.1007/s13198-021-01129-4.




DOI: https://doi.org/10.32620/reks.2022.3.04

Refbacks

  • There are currently no refbacks.