Adaptive myriad filter with time-varying noise- and signal-dependent parameters

Nataliya Tulyakova, Oleksandr Trofymchuk

Abstract


The research subject of this article is the methods of locally adaptive filtering of non-stationary signals. The goal is to develop a locally-adaptive algorithm for non-stationary noise (from the viewpoint of its time-varying variance) suppression in signals characterized by a different behavior of the informative component, with restricted apriori information about the signal model and noise variance. The tasks are to investigate the effectiveness of the proposed local-adaptive myriad filter using numerical statistical estimates of processing quality for a complex model of one-dimensional process that contains different elementary signals in various additive Gaussian noise variance variations; to investigate the effectiveness of non-stationary noise suppression for model and real signals. The methods are integral and local indicators of filter quality according to the criteria of the mean square error have been obtained using numerical simulation (via Monte Carlo analysis). The following results have been obtained: a noise- and signal-adapting myriad filter for the suppressing of non-stationary noise with significantly varying variance in signals with different behaviors of the informative component is proposed. Statistical estimates of the filter quality, evaluated by numerical simulation, show a higher efficiency of the proposed local-adaptive myriad filter in conditions of different noise levels compared to the other highly efficient locally-adaptive filters. Practically, total preservation of a signal at very low noise levels, minimal dynamical errors caused by filtering at low and middle noise levels, and more effective noise suppression at high values of noise variance are demonstrated. The analysis of output signals and plots of parameters for local adaptation and adaptable parameters confirm the high efficiency and correct operation of the investigated locally-adaptive algorithms. The high robust properties of these nonlinear filters are shown, as well as the expedience of using to spike the elimination of the previous robust Hampel filter in which the median operation is replaced by a myriad one. Examples displaying the high quality of non-stationary noise suppression in a biomedical signal of electronystagmogram are presented. Conclusions. The scientific novelty of the obtained results is the development of locally-adaptive myriad filters with time-varying noise- and signal-dependent parameters for de-noising processes with non-stationary signal behavior and noise variance. This filter does not require time for parameter adaptation and their exact adjustment, a priori knowledge of the signal model and noise variance, and can be applied in a quasi-real-time mode. The proposed algorithm of noise- and signal-adapting myriad filtering algorithm improves the quality of signal processing in difficult conditions of significant noise non-stationarity (variance variation).

Keywords


locally adaptive myriad filtering; non-stationary noise suppression; statistical estimates of efficiency; electronystagmogram

References


Oppenheim, A. V., Schafer R. W. Discrete time Signal Processing. Englewood Cliffs. NJ, Prentice Hall Publ., 1989.

Rao, A., Yip P. Discrete Cosi ne Transform. Academic Press Publ., 1990.

Huang, T. S., Eklund, J.-O., Nussbaumer, G. J. Bystrye algoritmy tsifrovoi obrabotki izobrazhenii [Fast algorithms in digital image processing]. Moscow, Radio i svyaz' Publ., 1984. 224 p.

Astola, J. Fundamentals of Nonlinear Digital Filtering. USA, CRC Press LLC Publ., 1997. 276 p.

Bernstein, R. Adaptive nonlinear filters for simultaneous removal of different kinds of noise in images. IEEE Transactions On Circuits and Systems, 1987, vol. 34, no. 11, pp. 1275-1291. DOI: 10.1109/TCS.1987.1086066.

Bovic, A., Huang, T., Munson, D. A generalization of median filtering using linear combinations of order statistics. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, vol. 31, no. 6, pp. 1342-1349. DOI: 10.1109/TASSP.1983.1164247.

Lukin, V. V., Tulyakova, N. O., Doroshchuk, M. O. Analiz svoistv algoritmov nelineinoi fil'tratsii odnomernykh informatsionnykh signalov [Property analysis of algorithms of nonlinear filtering of onedimensional information signals]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 1999, no. 12, pp. 109-113.

Lukin, V. V. Analiz povedeniya pokazatelei lokal'noi aktivnosti dlya nelineinykh adaptivnykh fil'trov [Analysis of local activity indicator behaviour for nonlinear adaptive filters]. Radiofizika i elektronika – Radio physics and electronics, 1998, vol. 3, no. 2, pp. 80-89.

Melnik, V. P., Lukin, V. V., Zelensky, A. A., Astola, J. T., Kuosmanen, P. Local activity indicators for hard-switching adaptive filtering of images with mixed noise. Optical Engineering, 2001, vol. 40, no. 8, pp. 1441-1455. DOI: 10.1117/1.1385815.

Zervakis, M. E., Venetsanopoulos, A. N. Linear and nonlinear image restoration under the presence of mixed noise. IEEE Transactions On Circuits and Systems, 1991, vol. 38, no. 3, pp. 258-272. DOI: 10.1109/31.101319.

Kalluri, S., Arce, G. R. Adaptive weighted myriad filter algorithms for robust signal processing in -stable noise environments. Proc. of the IEEE Transactions on Signal Processing, 1998, vol. 46, no. 2, pp. 322-334. DOI: 10.1109/78.655418.

Pander, T. An application of weighted myriad filter to suppression an impulsive type of noise in biomedical signals. TASK Quartarly, 2004, vol. 2, no. 8, pp. 199-216.

Pander, T. Impulsive noise filtering in biomedical signals with application of new myriad filter. BIOSIGNAL' 2010: Proc. of the Int. Conf., 2010, vol. 20, pp. 94-101.

Christov, I. I., Daskalov, I. K. Filtering of electromyogram artifacts from the electrocardiogram. Medical Engineering & Physics, 1999, vol. 21, pp. 731-736. DOI: 10.1016/S1350-4533(99)00098-3.

Bortolan, G., Christov, I., Simova, I., Dotsinsky, I. Noise processing in exercise ECG stress test for the analysis and the clinical characterization of QRS and T wave alternans. Biomedical Signal Processing and Control, 2015, vol. 18, pp. 378-385. DOI: 10.1016/j.bspc.2015.02.003.

Christov, I., Neycheva, T., Schmid, R., Stoyanov, T., Abächerli, R. Pseudo-real-time low-pass filter in ECG, self-adjustable to the frequency spectra of the waves. Medical & Biological Engineering & Computing, 2017, vol. 55, pp. 1579-1588. DOI: 10.1007/s11517-017-1625-y.

Christov, I., Neycheva, T., Schmid, R. Fine tuning of the dynamic low-pass filter for electromyographic noise suppression in electrocardiograms. Computing in Cardiology, 2017, vol. 44, pp. 1-4. DOI: 10.22489/CinC.2017.088-007.

Christov, I., Raikova, R., Angelova, S. Separation of electrocardiographic from electromyographic signals using dynamic filtration. Medical Engineering and Physics, 2018, vol. 57, pp. 1-10. DOI: 10.1016/j.medengphy.2018.04.007.

Christov, I., Gotchev, A., Bortolan, G., Neycheva, T., Raikova, R., Schmid, R. Separation of the electromyographic from the electrocardiographic signals and vice versa. A topical review of the Dynamic procedure. Int. J. Bioaotomation, 2020, vol. 24, no. 3, pp. 289-317. DOI: 10.7546/ijba.2020.24.3.000744.

Savitzky, A., Golay, M. Smoothing and differentiation of data by simplified least squares procedure. Analytical Chemistry, 1964, vol. 36, pp. 1627-1639. DOI: 10.1021/ac60214a047.

Diniz, P. S. Adaptive Filtering Algorithms and Practical Implementation. New York, USA: Springer, 2008, ch. 5.

Khan, Z. A., Zabit, U., Bernal, O. D., Hussain, T. Adaptive estimation and reduction of noises affecting a self-mixing interferometric laser sensor. IEEE Sensors Journal, 2020, vol. 20, no. 17, pp. 9806-9815. DOI: 10.1109/JSEN.2020.2992848.

Widrow, B., Glover, Jr. J. R., McCool, J. M., Kaunitz, J., Williams, C. S., Hearn, R. H., Zeidler, J. R., Dong, Jr. E., Goodling, R. C. Adaptive noise canceling: Principles and applications. Proc. IEEE, 1975, vol. 63, no. 12, pp. 1692-1716.

Clarkson, P. M. Optimal and Adaptive Signal Processing. New York, USA, Routledge, 2017, ch. 5.

Yager, R. R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on systems, Man, and Cybernetics, 1988, vol. 8, no. 1, pp.183-190. DOI: 10.1109/21.87068.

Pander, T. EEG signal improvement with cascaded filter based on OWA operator. Signal, Image and Video Processing, 2019, vol. 13, pp. 1165-1171. DOI: 10.1007/s11760-019-01458-9.

Anderson, B. D., Moore, J. B. Optimal Filtering. Prentice Hall: Englewood Cliffs, NJ, USA, 1979, chapters 2 - 4.

Chang, G. Robust Kalman filtering based on Mahalanobis distance as outlier judging criterion. Journal of Geodesy, 2014, vol. 88, pp. 391-401. DOI: 10.1007/s00190-013-0690-8.

Lee, K, Johnson, E. N. Robust outlier-adaptive filtering for vision-aided inertial navigation. Sensors, 2020, vol. 20, no. 7, article no. 2036. DOI: 10.3390/s20072036.

Tulyakova, N. O., Trofimchuk, A. N., Strizhak, A. E. Adaptivnyi metod s shumo- i signal'no-zavisimym pereklyucheniem fil'trov dlya podavleniya nestatsionarnogo shuma v signale elektrokardiogrammy v real'nom vremeni [Adaptive method with noise- and signal-dependent switching of filters for suppression of non-stationary noise in an electrocardiogram signal in real time]. Radiotekhnika – Radio engineering, 2018, no. 194, pp. 79-96.

Tulyakova, N. O., Trofimchuk, A. N. Lokal'no-adaptivnaya fil'tratsiya nestatsionarnogo shuma v dlitel'nykh elektrokardiograficheskikh signalakh [Locally adaptive filtering of non-stationary noise in long-term electrocardiographic signals]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2020, no. 4 (96), pp. 16-33. DOI: 10.32620/reks.2020.4.02.

Tulyakova, N., Trofymchuk, O. Real-time filtering adaptive algorithms for non-stationary noise in electrocardiograms. Biomedical Signal Processing and Control, 2022, vol. 72, part A. 103308. DOI: 10.1016/j.bspc.2021.103308.

Tulyakova, N., Trofimchuk, A., Strizhak, A. Adaptive algorithms for elimination of electromyographic noise in the electrocardiogram signal. Telecommunications and Radio Engineering, 2018, vol. 77, no. 6, pp. 549-561. DOI: 10.1615/TelecomRadEng.v77.i6.70.

Tulyakova, N., Neycheva, T., Trofymchuk, O., Stryzhak, O. Locally-adaptive myriad filtration of one-dimensional complex signal. Int. J. Bioaotomation, 2018, vol. 22, no. 3, pp. 273-294.

Tulyakova, N. O., Trofimchuk, A. N., Strizhak, A. E. Modifitsirovannye lokal'no-adaptivnye miriadnye fil'try [Modified locally-adaptive myriad filters]. Radiotekhnika – Radio engineering, 2019, no. 196, pp. 77-88. DOI: 10.30837/rt.2019.1.196.10.

Pearson, R. K., Neuvo, Y., Astola, J., Gabbouj, M. The class of generalized Hampel filters. EUSIPCO'2015: Proc. of the 23rd European Signal Processing Conference, Nice (France), 2015, pp. 2501-2505. DOI: 10.1109/EUSIPCO.2015.7362835.

Gonzalez, J. G., Arce, G. R. Optimality of the myriad filter in practical impulsive-noise environment. IEEE Transactions on Signal Processing, 2001, vol. 49, no. 2, pp. 438-441. DOI: 10.1109/78.902126.

Abramov, S. K. Algoritm realizatsii miriadnoi fil'tratsii [Myriad filtering realization algorithm]. Aviatsionnokosmicheskaya tekhnika i tekhnologiya –Aerospace technique and technology, 2000, vol. 21, pp. 143-147.

Tulyakova, N. O., Trofimchuk, A. N., Strizhak, A. E. Algoritmy miriadnoy fil'tratsii [Algorithms of myriad filtering]. Radioelektronnye i komp'yuternye sistemy – Radioelectronic and computer systems, 2014, no. 4 (68), pp. 76-83.

Pander, T. The class of M-filters in the application of ECG signal processing. Biocybernetics and Biomedical Engineering, 2006, vol. 26, no. 4, pp. 3-13.

Augustyniak, P., Tadeusiewicz, R. Improve the quality of diagnostic parameters of an electronystagmogram using signal filtration in the time-frequency domain and adaptatively adjusted characteristics. TFTS-96: Proc. of Third Int. Symposium on Time-Frequency and Time-Scale Analysis, 1996, pp. 381-384.

Pander, T., Czabański, R., Przybyła, T., Pojda-Wilczek, D. An automatic saccadic eye movement detection in an optokinetic nystagmus signal. Biomedical Engineering / Biomedizinische Technik, 2014, vol. 59, no. 6, pp. 529-543. doi:10.1515/bmt-2013-0137.




DOI: https://doi.org/10.32620/reks.2022.2.17

Refbacks

  • There are currently no refbacks.