Development of tools for information protection of optical text recognition systems
Abstract
Keywords
Full Text:
PDFReferences
Sahu, N., Sonkusare, M. A Study on Optical Character Recognition-Techniques. The International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE), 2017, vol. 4, no. 1. 14 p. DOI: 10.5121/ijcsitce.2017.4101.
Mujibur Rahman Majumder et al. Offline optical character recognition (OCR) method: An effective method for scanned documents. 22nd International Conference on Computer and Information Technology (ICCIT) – 2019, pp. 1-5. DOI: 10.1109/ICCIT48885. 2019. 9038593.
Viet, Anh Phan. et al. Improved OCR quality for smart scanned document management system. Journal of Science and Technique − Le Quy Don Technical University, 2020, no. 210, pp. 51-67.
Tesseract − ocr/Tesseract. Available at: https://github.com/tesseract-ocr/tesseract. (аccessed 17.01.2022).
Python-tesseract − Optical character recognition (OCR) tool for Python. Available at: https: //pypi.org/project/ pytesseract/. (аccessed 17.01.2022).
Pawar, N., Shaikh, Z., Shinde, P., Warke, Y., Image to Text Conversion Using Tesseract. International Research Journal of Engineering and Technology (IRJET), 2019, vol. 6, iss. 2, pp. 516-519.
Abbyy Finereader (Skaner s iskusstvennym intellektom dlya otsifrovki v PDF i raspoznavaniya teksta) [Abbyy Finereader (Scanner with artificial intelligence for digitizing to PDF and OCR)]. Available at: https://www.abbyy.com/ru/finereader/ (аccessed 17.01.2022).
OCRopus − OCR-sistema dlya raspoznavaniya tekstov na baze tesseract [OCRopus − tesseract based OCR system for text recognition]. Available at: https://ru.wikipedia.org/wiki/Cognitive_Technologies (аccessed 17.01.2022).
Dergachov, K. et al. Data pre-processing to increase the quality of optical text recognition systems. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2021, no. 4(100), pp. 183-198. DOI: 10.32620/reks.2021.4.15.
Dergachov, K. et al. Methods and algorithms for protecting information in optical text recognition systems. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2022, no. 1(101), pp. 154-169. DOI: 1032620/reks.2022.1.12.
Srivastava S., Verma A., Sharma, S. Optical Character Recognition Techniques: A Review. IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), 2022. pp. 1-6. DOI: 10.1109/SCEECS54111.2022. 9740911.
Lin, G.-S. et al. Keyword Detection Based on RetinaNet and Transfer Learning for Personal Information Protection in Document Image. Appl. Sci., 2021, vol. 11, iss. 20, article no. 9528. DOI: 10.3390/app11209528.
Shemiakina, J. et al. A Method of Image Quality Assessment for Text Recognition on Camera-Captured and Projectively Distorted Documents. Mathematics, 2021, vol. 9, iss. 17, article no. 2155. DOI: 10.3390/math9172155.
De Jager, C. et al. Business Process Automation: A Workflow Incorporating Optical Character Recognition and Approximate String and Pattern Matching for Solving Practical Industry Problems. Appl. Syst. Innov., 2019, vol. 2, no. 4, article no. 33. DOI: 10.3390/asi2040033.
Sasmitha Kumari Sahu et al. Manual character recognition with OCR. Project, 2021. DOI: 10.13140/RG.2.2.32608.81927.
Masud, K. I. et al. A New Approach of Cryptography for Data Encryption and Decryption. 5th International Conference on Computing and Informatics (ICCI), 2022, pp. 918-922. DOI: 10.1109/ICEARS53579.2022.9751932.
William, P. et al. Assessment of Hybrid Cryptographic Algorithm for Secure Sharing of Textual and Pictorial Content. International Conference on Electronics and Renewable Systems (ICEARS), 2022, pp. 918-922. DOI: 10.1109/ICEARS 53579.2022. 9751932.
Ahamed, M. S., Asiful, Mustafa H. A Secure QR Code System for Sharing Personal Confidential Information. International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2), 2019, pp. 1-4. DOI: 10.1109/IC4ME247184.2019.9036521.
Pastukhov, D. F. et al. Some Methods of QR code Transmission using Steganography. World of transport and transportation, 2019, vol. 17, Iss. 3, pp. 16–39.
Rituraj, R. et al. QR code image steganography (LSB BIT) with secret image (MSB BIT) using AES cryptography and JPEG compression. International Journal of Recent Scientific Research, 2019, vol. 9, Iss. 7, pp. 27820-27826.
Yudin, O. et al. Efficiency Assessment of the Steganographic Coding Method with Indirect Integration of Critical Information. IEEE International Conference on Advanced Trends in Information Theory (ATIT), 2019, pp. 36-40. DOI: 10.1109/ATIT49449.2019. 9030473.
Li, F., Krivenko, S., Lukin, V. Two-step provsding of desired quality in lossy image compression by spiht. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2020, no. 2(94), pp. 22-32. DOI: 10.32620/reks.2020.2.02.
Wazirali, R. et al. Objective Quality Metrics in Correlation with Subjective Quality Metrics for Steganography. Asia-Pacific Conference on Computer Aided System Engineering, 2015, pp. 238-245, DOI: 10.1109/APCASE.2015.49.
Python Developer's Guide. Available at: http://python.org (аccessed 17.01.2022).
OpenCV Tutorials − Image Processing (imgproc module). Available at: https://opencv.org/ (аccessed 17.01.2022).
Python-tesseract − Optical character recognition (OCR) tool for Python. Available at: https://pypi.org/project/pytesseract/.(аccessed 17.01.2022).
DOI: https://doi.org/10.32620/reks.2022.2.13
Refbacks
- There are currently no refbacks.