Formalization and solution of the maximum area coverage problem using library Shapely for territory monitoring
Abstract
Keywords
Full Text:
PDF (Українська)References
Fei, Z., Li, B., Yang S., et. al. A survey of multi-objective optimization in wireless sensor networks: metrics, algorithms and open problems, IEEE Communications Surveys & Tutorials, 2017, vol. 19, iss. 1, pp. 550-586. DOI: 10.1109/ comst.2016.2610578
Wei, R. Coverage location models: alternatives, approximation, and uncertainty. International Regional Science Review, 2017, vol. 39, iss. 1, pp. 48-76. DOI: 10.1177/0160017615571588.
Zafari, F., Gkelias, A., and Leung, K. A survey of indoor localization systems and technologies. IEEE Commun. Surveys Tuts, 2019, vol. 21, no. 3, pp. 2568–2599. DOI: 10.1109/COMST.2019.2911558.
Wu, C. Q., Wang, L. On efficient deployment of wireless sensors for coverage and connectivity in constrained 3D space. Sensors, 2017, vol. 17, iss. 2304, pp. 1-26. DOI: 10.3390/s17102304.
Zhyla, S., Volosyuk, V., Pavlikov V., et.al. Statistical synthesis of aerospace radars structure with optimal spatio-temporal signal processing, extended observation area and high spatial resolution. Radioelectronic and Computer Systems, 2022, no. 1(101), pp. 178-194. DOI: 10.32620/reks.2022.1.14.
Yaloveha, V., Podorozhniak, A., Kuchuk, H. Convolutional neural network hyperparameter optimization applied to land cover classification. Radioelectronic and Computer Systems, 2022, no. 1(101), pp. 115-128. DOI: 10.32620/reks.2022.1.09.
Murray, A. T. Optimising the spatial location of urban fire stations. Fire Safety Journal, 2013, vol. 62, pp. 64–71. DOI: 10.1016/j.firesaf.2013.03.002.
Adesina, E. A., Odumosu, J. O., Morenikeji, O. O., Umoru, E., Ayokanmbi, A. O., Ogunbode, E. B. Optimization of fire stations services in Minna metropolis using maximum covering location model (MCLM). J Appl Sci Environ Sustain, 2017, vol. 3, iss. 7, рр. 172–187.
Hashemi, A., Gholami, H., Venkatadri, U., Wojciechowski, A., Streimikiene, D. A new direct coefficient-based heuristic algorithm for set covering problems. International Journal of Fuzzy Systems, 2022, vol. 24, iss. 2, pp. 1131–1147. DOI: 10.1007/s40815-021-01208-5.
Li, Xu, Fletcher, G., Nayak, A., and Stojmenovic, I. Placing sensors for area coverage in a complex environment by a team of robots. ACM Transactions on Sensor Networks, 2014, vol. 11, iss. 1, pp. 1–22. DOI: 10.1145/2632149.
Kliushnikov, I. M., Fesenko, H. V., Kharchenko, V. S. Scheduling UAV fleets for the persistent operation of UAV-enabled wireless networks during NPP monitoring. Radioelectronic and Computer Systems, 2020, no. 1(93), рр. 29-36. DOI: 10.32620/reks.2020.1.03.
Song, P. and Yonghua, X. A new sensing direction rotation approach to area coverage optimization in directional sensor network. J. Adv. Comput. Intell. Inform, 2020, vol. 24, iss. 2, pp. 206-213. DOI: 10.20965/jaciii.2020.p0206.
Dorninger, D. On a conjecture of L. Fejes Tóth and J. Molnár about circle coverings of the plane. Period Math Hung, 2019, vol. 78, pp. 242–253. DOI: 10.1007/s10998-018-0254-z.
Rvachev, V. L. Teoriya R-funktsii i nekotoryye yeye prilozheniya: monografiya [Theory of the R-function and some of its applications: monograph]. Kyiv: “Nauk. Dumka” Publ., 1982. 552 p.
Stoyan, Y., Scheithauer, G., Gil, N., Romanova, T. Φ-functions for complex 2D-objects. 4OR, 2004, vol. 2, iss. 1, pp. 69-84. DOI: 10.1007/s10288-003-0027-1.
Bennell, J., Scheithauer, G., Stoyan, Y., Romanova, T. Tools of mathematical modeling of arbitrary object packing problems. Annals of Operations Research, 2010, vol. 179, iss. 1, pp. 343–368. DOI: 10.1007/s10479-008-0456-5.
Gaspar, Z., Tarnai, T., Hincz, K. Partial covering of a circle by equal circles. Part 1: The mechanical models. Journal of Computational Geometry, 2014, vol. 5, iss. 1, pp. 104–125. DOI: 10.20382/jocg.v5i1a6.
Stoyan, Y. G., Patsuk, V. M. Covering a compact polygonal set by identical circles. Comp. Opt. and Appl., 2010, vol. 46, iss.1, pp. 75-92. DOI: 10.1007/s10589-008-9191-8.
Antoshkin, O. A., Pankratov, O. V. Uzahalʹnena mate-matychna modelʹ zadachi pokryttya oblasti identychnymy kolamy ta yiyi osnovni realizatsiyi [The mathematical model of the problem covering the areas of identical stakes and the main implementations has been elaborated]. Systemy obrobky informatsiyi [Information processing systems], 2019, no. 1(156), pp. 44-49. DOI: 10.30748/soi.2019.156.06.
Pankratov, A., Romanova, T., Litvinchev, I., Marmolejo-Saucedo, J. A. An optimized covering spheroids by spheres. Applied Sciences (Switzerland), 2020, 10 (5), paper № 1846, DOI: /10.3390/app10051846
Stoyan, Y. G., Romanova, T., Scheithauer, G., Krivulya, A. Covering a polygonal region by rectangles. Computational Optimization and Applications, 2011, vol. 48, iss.3, pp. 675-695. DOI: 10.1007/s10589-009-9258-1.
Li, J., Wang, R., Huang, H. and Sun, L. Voronoi based area coverage optimization for directional sensor networks. Proc. of the 2009 2nd Int. Symp. on Electronic Commerce and Security, 2009, pp. 488-493. DOI: 10.4236/wsn.2009.15050.
Kiseleva, E., Hart, L., Prytomanova, O., Kuzenkov, O. An algorithm to construct generalized Voronoi diagrams with fuzzy parameters based on the theory of optimal partitioning and neuro-fuzzy technologies. CEUR Workshop Proceedings, 2019, vol. 2386, pp. 148-162.
Sung, T.-W., Yang, C.-S. Localised sensor direction adjustments with geometric structures of Voronoi diagram and Delaunay triangulation for directional sensor networks. Int. J. of Ad Hoc and Ubiquitous Computing, 2015, vol. 20, no. 2, pp. 91-106. DOI: IJAHUC.2015.071694.
Kiseleva, E. M. The emergence and formation of the theory of optimal set partitioning for sets of the n-dimensional Euclidean space. Theory and application Journal of Automation and Information Sciences, 2018, vol. 50, no. 9, pp. 1-24. DOI: 10.1615/JAutomatInfScien.v50.i9.10.
Kiseleva, Е. М., Kadochnikova, Y. E. Solving a Continuous Single-product Problem of Optimal Partitioning with Additional Conditions. Journal of Automation and Information Science, 2009, vol. 41, no. 7, pp. 48-63. DOI: 10.1615/JAutomatInfScien.v41.i7.30.
Stoyan, Y. G., Yakovlev, S. V. Configuration Space of Geometric Objects. Cybernetics and Systems Analysis, 2018, vol. 54, no. 5, pp. 716–726. DOI: 10.1007/s10559-018-0073-5.
Yakovlev, S. V. On some classes of spatial configurations of geometric objects and their formalization. Journal of Automation and Information Sciences, 2018, vol. 50, iss. 9, pp. 38–50. DOI: 10.1615/JAutomatInfScien.v50.i9.30.
Berge, C. Principes de combinatoire. Paris, Dunod Publ., 1968. 146 p.
Yakovlev, S. V. Formalizing spatial configuration optimization problems with the use of a special function class. Cybernetics and Systems Analysis, 2019, vol. 55, iss. 4, pp. 581-589. DOI: 10.1007/s10559-019-00167-y.
Gillies, S. The Shapely User Manual. Available at: https://shapely.readthedocs.io/en/stable/manual.html (accessed 12.03.2022).
Pankratov, A. V., Romanova, T. Ye., Subbota, I. A. Development of effective algorithms for optimal packing of ellipses. Eastern-European Journal of Enterprise Technologies, 2014, vol. 5, no. 4 (71), pp. 28-35. DOI: 10.15587/1729-4061.2014.28015.
DOI: https://doi.org/10.32620/reks.2022.2.03
Refbacks
- There are currently no refbacks.