Adaptive identification under the maximum correntropy criterion with variable center

Oleg Rudenko, Oleksandr Bezsonov

Abstract


The problem of identifying the parameters of a linear object in the presence of non-Gaussian noise is considered. The identification algorithm is a gradient procedure for maximizing the functional, which is a correntropy. This functionality allows you to get estimates that have robust properties. In contrast to the commonly used Gaussian kernels, the centers of which are at zero and effective for distributions with zero mean, the paper considers a modification of the criterion suitable for distributions with nonzero mean. The modification is to use correntropy with a variable center The use of Gaussian kernels with a variable center will allow us to estimate unknown parameters under Gaussian and non-Gaussian noises with zero and non-zero mean distributions and provide an opportunity to develop new technologies for data analysis and processing. It is important to develop a robust identification algorithm based on correntropy with variable center. Their properties in the identification of stationary and non-stationary objects are the subject of research. The goal is to develop a robust identification algorithm that maximizes the criterion of correntropy with a variable center using center configuration procedures and kernel width and to study its convergence in stationary and non-stationary cases under non-Gaussian noise. Expressions for steady-state value of the estimation error are obtained, which depend on the type of noise distribution and the degree of non-stationarity of the estimated parameters The following tasks are solved: to investigate the convergence of the algorithm and determine the conditions for the stability of the established identification process. Methods of estimation theory (identification) and probability theory are used. The following results were obtained: 1) the developed algorithm provides robust estimates in the presence of noises having a distribution with zero and non-zero mean; 2) its convergence was studied in stationary and non-stationary cases under conditions of Gaussian and non-Gaussian noise; 3) simulation of the algorithm was carried out. 1) the developed algorithm consists in the development of a robust identification algorithm that maximizes the criterion of correntropy with a variable center; 2) its convergence in stationary and non-stationary cases in the conditions of Gaussian and non-Gaussian noises is investigated; 3) simulation of the algorithm is performed. Conclusions: The results of the current study will improve existing data processing technologies based on robust estimates and accelerate the development of new computing programs in real time.

Keywords


correntropy; maximization; functional; gradient algorithm; asymptotic estimation; convergence; identification accuracy; steady state

Full Text:

PDF

References


Huber, P. J. Robust Statistics. N.Y., John Wiley and Sons Publ., 1981. 317 p.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., Stahel, W. A. Robust Statistics. The Approach Based on Influence Functions. N.Y., John Wiley and Sons Publ., 1986. 526 p.

Rudenko, O. G., Bezsonov, O. O. Robastnoe obuchenie veivlet-neirosetei [Robust learning of wavelet neural networks]. Problems of control and informatics, 2010, no. 5, рр. 66–79.

Rudenko, O. G., Bezsonov, O. O. Function approximation using robust radial basis function networks. J. of Intelligent Learning Systems and Applications, 2011, vol. 3, no. 1, рр. 17–25. DOI: 10.4236/jilsa.2011.31003.

Chambers, J., Avlonitis, A. A Robust Mixed-Norm Adaptive Filter Algorithm. IEEE Signal Processing Letters, 1997, vol. 4, iss. 2, pp. 46–48. DOI: 10.1109/97.554469.

Papoulis, E. V., Stathaki, T. A Normalized Robust Mixed-Norm Adaptive Algorithm for System Identification. IEEE Signal Processing Letters,2004, vol. 11, no. 1, pp. 56–59. DOI: 10.1109/LSP.2003.819353.

Zerguine, А. A variable-parameter normalized mixed-norm (VPNMN) adaptive algorithm. EURASIP Journal on Advances in Signal Processing, 2012, article no. 55. DOI: 10.1186/1687-6180-2012-55.

Rudenko, O. G., Bezsonov, O. O., Serdiuk, N. N., Oliinyk, K. O., Romanyk, O. S. Robastna identyfikatsiya ob"yektiv za nayavnostyu nehausivs'kykh zavad [Robust identification of objects in the presence of non-Gaussian interference]. Bionics of the intellect, 2019, no. 2 (93), pp. 7–12.

Rudenko, O. G., Bezsonov, O. O., Serdiuk, N. N., Oliinyk, K. O., Romanyk, O. S. Robastna identyfikatsiya ob"yektiv na osnovi minimizatsiyi kombinovanoho funktsionalu [Robust object identification based on minimization of combined functional]. Information processing systems, 2020, no. 1 (160), рр. 80–88.

Erdogmus, D., Principe, J. C. Generalized information potential criterion for adaptive system training. IEEE Trans. Neural Netw., 2002, vol. 13, iss. 5, pp. 1035–1044.

Erdogmus, D., Principe, J. C. Convergence properties and data efficiency of the minimum error entropy criterion in ADALINE training. IEEE Trans. Signal Process., 2003, vol. 51, iss. 7, pp. 1966–1978.

Chen, B., Zhu, Y., Hu, J. Mean-Square Convergence Analysis of ADALINE Training with Minimum Error Entropy Criterion. IEEE Transactions on Neural Networks, 2010, vol. 21, iss. 7, pp. 1168–1179.

Santamaría, I., Pokharel, P. P., Principe, J. C. Generalized Correlation Function: Definition, Properties, and Application to Blind Equalization. IEEE Trans. on Signal Processing, 2006. vol. 54, iss. 6, pp. 2187–2197. DOI: 10.1109/TSP.2006.872524.

Liu, W., Pokharel, P. P., Principe, J. C. Correntropy: Properties and Applications in Non-Gaussian Signal Processing. IEEE Trans. on Signal Processing, 2007, vol. 55, no. 11, pp. 5286–5298. DOI: 10.1109/TSP.2007.896065.

Wang, W., Zhao, J., Qu, H., Chen, B., Principe J. C. An adaptive kernel width update method of correntropy for channel estimation. IEEE International Conference on Digital Signal Processing (DSP), 2015, pp. 916–920. DOI: 10.1109/ICDSP.2015.7252010.

Gunduz, A., Principe, J. C. Correntropy as a novel measure for nonlinearity tests. Signal Processing, 2009, vol. 89, pp. 14–23. DOI: 10.1016/j.sigpro.2008.07.005.

Lu, L., Zhao, H. Active impulsive noise control using maximum correntropy with adaptive kernel size. Mechanical Systems and Signal Processing, 2017, vol. 87, Part A, pp. 180–191. DOI: 10.1016/j.ymssp.2016.10.020.

Huang, F., Zhang, J., Zhang, S. Adaptive filtering under a variable kernel width maximum correntropy criterion. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, vol. 64, no. 10, pp. 1247–1251. DOI: 10.1109/TCSII.2017.2671339.

Flores, T. K. S., Villanueva, J. M. M., Gomes, H. P., Catunda, S. Y. C. Adaptive Pressure Control System Based on the Maximum Correntropy Criterion. Sensors, 2021, vol. 21, no. 15, article no. 5156. DOI: 10.3390/s21155156.

Xie, F., Hu, T., Wang, S., Wang, D. Maximum Correntropy Criterion with Distributed Method. Mathematics, 2022, vol. 10, article no. 304. DOI: 10.3390/math10030304.

Li, Y., Wang, Y., Sun, L. A Proportionate Normalized Maximum Correntropy Criterion Algorithm with Correntropy Induced Metric Constraint for Identifying Sparse Systems. Symmetry, 2018, vol. 10, article no. 683. DOI: 10.3390/sym10120683.

Zhang, J., Huang, G., Zhan, L. Generalized Correntropy Criterion-Based Performance Assessment for Non-Gaussian Stochastic Systems. Entropy, 2021, vol. 23, article no. 764. DOI: 10.3390/e23060764.

Wang, X., Han, J. Affine Projection Algorithm by Employing Maximum Correntropy Criterion for System Identification of Mixed Noise. IEEE Access, 2019, vol. 7, pp. 182515–182526.

Chen, B., Wang, X., Li, Y., Principe, J. C. Maximum Correntropy Criterion with Variable Center. IEEE Signal Process. Letter, 2019, vol. 26, no. 5, pp. 1212-1216 arXiv:1904.06501v1 [stat.ML] 13 Apr 2019. DOI: 10.1109/LSP.2019.2925692.

Zhu, L., Song, C., Pan, L., Li, J. Adaptive Filtering Under the Maximum Correntropy Criterion With Variable Center. IEEE Access, 2019, pp. 105902–105908. DOI: 10.1109/ACCESS.2019.2932201.

Sun, Q., Zhang, H., Wang, X., Ma, W., Chen, B. Sparsity Constrained Recursive Generalized Maximum Correntropy Criterion With Variable Center Algorithm. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, vol. 67, no. 12, pp. 3517–3521. DOI: 10.1109/TCSII.2020.2986053.

Yang, J., Cao, J., Xue, A. Robust Maximum Mixture Correntropy Criterion-Based Semi-Supervised ELM With Variable Center. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, vol. 67, no. 12, pp. 3572–3576. DOI: 10.1109/TCSII.2020.2995419.

Price, R. A useful theorem for nonlinear devices having Gaussian inputs. IREN Trans. Inform Theory, 1958, no. 4, pp. 69–72. DOI: 10.1109/TIT.1958.1057444

Moskalenko, V. V., Zarets'kyy, M. O. Koval's'kyy, Ya. Yu., Martynenko, S. S. Model' i metod navchannya klasyfikatora kontekstiv sposterezhennya na zobrazhennyakh videoinspektsiyi stichnykh trub [Model and method of training the classifier of observation context on video inspection images of sewer pipes]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2020, no.3, рр. P.59 –66. doi: 10.32620/reks.2020.3.06

Naumenko, I., Myronenko, М., Savchenko, Т. Information-extreme machine training of on-board recognition system with optimization of RGB-component digital images. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2021, no. 4, рр. 59-70. DOI: 10.32620/reks.2021.4.05.




DOI: https://doi.org/10.32620/reks.2022.1.17

Refbacks

  • There are currently no refbacks.