Simulation and software for research of ejector operation in variable modes

Дмитро Вікторович Коновалов, Роман Миколайович Радченко, Сергій Георгійович Фордуй, Фелікс Володимирович Царан, Віктор Павлович Халдобін, Артем Вікторович Грич

Abstract


One of the current directions of development of modern energy-saving and energy-efficient technologies for ship and stationery (including municipal) energy is the use of ejector refrigeration machines, which can be used for air conditioning systems together with an absorption refrigeration machine (cascade cycle) or vapor compressor refrigeration machine as part of cogeneration or trigeneration units. Such circuit solutions can be used together with ensuring the rational organization of work processes in the main elements of the refrigeration machine, in particular in the jet device - ejector, the appropriate design of which, in turn, will further increase the thermal coefficient. Improving the design of the ejector is a rather complex and long process and does not always give positive results. It is primarily because many tests are required on full-scale models. Therefore, computer simulation of the ejector operation at different variable input parameters, considering the geometric characteristics of the flow part and variable mode characteristics during operation is more attractive in terms of finding options for rational (optimal) design. The paper presents the results of software development for modeling hydrodynamic processes in the flowing part of the ejector, considering the variable operating modes of the ejector refrigeration machine. The existing method for calculating the pressure and circulation characteristics of jet devices is used. The developed software complex "RefJet" in the design mode defines the maximum achievable coefficients of ejection of a jet ejector. In the simulation mode - provides determination of the ejection coefficients of the already designed (certain sizes) ejector at variable values of pressure at the inlet and outlet in specific operating conditions, considering its operation at the limit and partial modes. The work of the software package was tested in the development and analysis of circuit solutions of ejector refrigeration machines as part of the heat recovery circuits of three-generation units based on internal combustion engines and gas turbine engines.

Keywords


software package; computer simulation; ejector; workflow; refrigeration machine; power plant

References


Kornienko, V., Radchenko, R., Mikielewicz, D., Pyrysunko, M., Andreev, A. Improvement of Characteristics of Water-Fuel Rotary Cup Atomizer in a Boiler. Advanced Manufacturing Processes II. InterPartner 2020. LNME, 2021, pp. 664-674. DOI: 10.1007/978-3-030-68014-5_64.

Radchenko, A., Mikielewicz, D., Forduy, S., Radchenko, M., Zubarev, A. Monitoring the Fuel Efficiency of Gas Engine in Integrated Energy System. Integrated Computer Technologies in Mechanical Engineering (ICTM 2019). AISC, 2020, vol. 1113, pp. 361-370. DOI: 10.1007/978-3-030-37618-5_31.

Radchenko, R., Pyrysunko, M., Radchenko, A., Andreev, A., Kornienko, V. Ship Engine Intake Air Cooling by Ejector Chiller Using Recirculation Gas Heat. Advanced Manufacturing Processes II. InterPartner 2020. LNME, 2021, pp. 734-743. DOI: 10.1007/978-3-030-68014-5_71.

Trushliakov, E., Radchenko, A., Forduy, S., Zubarev, A., Hrych, A. Increasing the Operation Efficiency of Air Conditioning System for Integrated Power Plant on the Base of Its Monitoring. Integrated Computer Technologies in Mechanical Engineering (ICTM 2019). AISC, 2020, vol. 1113, pp. 351-360. DOI: 10.1007/978-3-030-37618-5_30.

Radchenko, A., Trushliakov, E., Kosowski, K., Mikielewicz, D., Radchenko M. Innovative turbine intake air cooling systems and their rational designing. Energies, 2020, vol. 13, no. 23, article Id: 6201. DOI: 10.3390/en13236201.

Bileka, B. D., Garkusha, L. K. Toplivnaya ekonomichnost kogeneratsionno-teplonasosnykh tekhnologiy v kotelnykh sredney moshchnosti [The fuel economicity of coheneration- heat pump technologies on the basis of gas turbine installations in medium capacity boiler-houses]. Promyshlennaya teplotekhnika – Industrial heating technology, 2018, vol. 40, no.1, pp. 51-55. DOI:10.31472/ihe.1.2018.07.

Hafner, A., Gabrielii, C. H., Widell, K.: Refrigeration units in marine vessels. Nordic Council of Ministers, 2018, pp. 8.

Radchenko, M., Mikielewicz, D., Tkachenko, V., Klugmann, M., Andreev, A. Enhancement of the Operation Efficiency of the Transport Air Conditioning System. Advances in Design, Simulation and Manufacturing II. LNME, 2019, pp. 332-342.

Radchenko, M., Radchenko, R., Kornienko, V., Pyrysunko, M. Semi-Empirical Correlations of Pollution Processes on the Condensation Surfaces of Exhaust Gas Boilers with Water-Fuel Emulsion Combustion. Advances in Design, Simulation and Manufacturing II. LNME, 2019, pp. 853-862. DOI: 10.1007/978-3-030-22365-6_85.

Radchenko, M., Radchenko, R., Tkachenko, V., Kantor, S., Smolyanoy, E. Increasing the Operation Efficiency of Railway Air Conditioning System on the Base of Its Simulation Along the Route Line. Integrated Computer Technologies in Mechanical Engineering (ICTM 2019). AISC, 2020, vol. 1113, pp. 461-467. DOI: 10.1007/978-3-030-37618-5_39.

Trushliakov, E. Radchenko, A., Radchenko, M., Kantor, S., Zielikov, O. The Efficiency of Refrigeration Capacity Regulation in the Ambient Air Conditioning Systems. Advances in Design, Simulation and Manufacturing III. LNME, 2020, pp. 343-353. DOI: 10.1007/978-3-030-50491-5_33.

Radchenko, N. I. On reducing the size of liquid separators for injector circulation plate freezers. International Journal of Refrigeration, 1985, vol. 8, no. 5, pp. 267-269.

Konovalov, D., Kobalava, H., Radchenko, M., Scurtu, I. C., Radchenko, R. Determination of hydraulic resistance of the aerothermopressor for gas turbine cyclic air cooling. Proceedings of the 9th International Conference on Thermal Equipments, Renewable Energy and Rural Development 2020, E3S Web of Conferences 180(3011):01012, 2020. 14 p. DOI: 10.1051/e3sconf/202018001012.

Kornienko, V., Radchenko, R., Konovalov, D., Andreev, A., Pyrysunko, M.: Characteristics of the Rotary Cup Atomizer Used as Afterburning Installation in Exhaust Gas Boiler Flue. Advances in Design, Simulation and Manufacturing III (DSMIE 2020). LNME, 2020, pp. 302-311. DOI: 10.1007/978-3-030-50491-5_29.

Radchenko, M., Radchenko, A., Radchenko, R., Kantor, S., Konovalov, D., Kornienko, V. Rational loads of turbine inlet air absorption-ejector cooling systems. Proc. IMechE Part A: J Power and Energy, 2021, (OnlineFirst). 13 p. DOI: 10.1177/09576509211045455.

Konovalov, D., Kobalava, H., Maksymov, V., Radchenko, R., Avdeev M. Experimental research of the excessive water injection effect on resistances in the flow part of a low-flow aerothermopressor. Advances in Design, Simulation and Manufacturing III. LNME, 2020, pp. 292-301. DOI: 10.1007/978-3-030-50491-5_28.

Dessouky, H., Ettouney, H., Alatiqi, I., Nuwaibit, G. Evaluation of steam jet ejectors. Chemical Engineering and Processing: Process Intensification, 2002, vol. 41, no. 6, pp. 551–561.

Elbel, S., Lawrence, N. Review of recent developments in advanced ejector technology. International Journal of Refrigeration, 2016, vol. 62, pp. 1-18.

Elbel, S. Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air conditioning. International Journal of Refrigeration, 2011, vol. 34, no. 7, pp. 1545-1561.

Lawrence, N., Elbel, S. Experimental investigation of a two-phase ejector cycle suitable for use with low-pressure refrigerants R134a and R1234yf. International Journal of Refrigeration, 2014, vol. 38, pp. 310-322.

Elbel, S. Hrnjak, P. Ejector Refrigeration: An Overview of Historical and Present Developments with an Emphasis on Air-Conditioning Applications. In International Refrigeration and Air Conditioning Conference, 2008, Paper 884.

Pounds, D. A., Dong, J. M., Cheng, P., Ma, H. B. Experimental investigation and theoretical analysis of an ejector refrigeration system. International Journal of Thermal Sciences, 2013, no. 67, pp. 200-209.

Sexton, W. R., Sexton, M. R. The Effects of Wet Compression on Gas Turbine Engine Operating Performance. Proceedings of GT2003 ASME Turbo Expo: Power for Land, Sea and Air 2009, Atlanta, Georgia, USA, 2009. DOI: 10.1115/GT2003-38045.

Konovalov, D., Kobalava, H., Radchenko, M., Sviridov, V., Scurtu, I.C. Optimal Sizing of the Evaporation Chamber in the Low-Flow Aerothermopressor for a Combustion Engine. Advanced Manufacturing Processes II. InterPartner 2020. LNME, 2021, pp. 654-663. DOI: 10.1007/978-3-030-68014-5_63.

Chen, J. Y., Havtun, H., Palm, B. Investigation of ejector in refrigeration systems: optimum performance evaluation and ejector area ratios perspectives. Applied Thermal Engineering, 2014, no. 64, pp. 182–191.

Butrymowicz, D., Gagan, J., Śmierciew, K., Łukaszuk, M., Dudar, A., Pawluczuk, A., Łapiński, A., Kuryłowicz, A. Investigations of prototype ejection refrigeration system driven by low grade heat. HTRSE-2018, E3S Web of Conferences 70, 2018. 7 p.

Tan, Y., Wang, L., Liang, K. Thermodynamic performance of an auto-cascade ejector refrigeration cycle with mixed refrigerant R32, R236fa. Applied Thermal Engineering, 2015, no. 84, pp. 268–275.

Valle, J. G., Jabardo, J. M. S., Ruiz, F. C., Alonso, J. A one dimensional model for the determination of an ejector entrainment ratio. International Journal of Refrigeration, 2012, vol. 35, no. 4, pp. 772-784.

Yari, M., Mahmoudi, S. M. S. Thermodynamic analysis and optimization of novel ejector-expansion TRCC (transcritical CO2) cascade refrigeration cycles (Novel transcritical CO2 cycle). Energy, 2011, no. 36, pp. 6839-6850.

Shestopalov, K. O., Huang, B. J., Petrenko, V. O., Volovyk, O. S. Investigation of an experimental ejector refrigeration machine operating with refrigerant R245fa at design and off-design working conditions. International Journal of Refrigeration, 2015, no. 55, pp. 212-223.

Stefan, E., Neal, L. Review of recent developments in advanced ejector technology. International Journal of Refrigeration, 2016. 18 p.

Mohammed, K., Nicolas, G., Mikhail, S. Effects of design conditions and irreversibilities on the dimensions of ejectors in refrigeration systems. Applied Energy, 2016, no. 179, pp. 1020–1031.

Yapici, R., Ersoy, H. K. Performance characteristics of the ejector refrigeration system based on the constant area ejector flow model. Energy Conversion and Managemen, 2005, no. 46, pp. 3117–3135.

Nehdi, E., Kairouani, L., Bouzaina, M. Performance analysis of the vapour compression cycle using ejector as an expander. Int. J. Energy Res. 2007, no. 31, pp. 364–375.

Eames, I. W., Ablwaifa, A. E., Petrenko, V. O. Results of an experimental study of an advanced jet-pump refrigerator operating with R245fa. Applied Thermal Engineering, 2007, no. 27, pp. 2833–2840.

Kracik, J., Dvorak, V. Development of an analytical method for predicting flow in a supersonic air ejector. EPJ Web of Conferences, 2016, 114. DOI: 10.1051/epjconf/201611402059.

Cui, Y. Simulation of flow field in steam ejector and analysis of shock wave characteristics. MATEC Web of Conferences, 2018, no. 198. DOI: 10.1051/matecconf/201819803001.

Oh, H. W. Advanced Fluid Dynamics. Rijeka, Croatia, 2012. 282 p.

Bychok, M., Pohudina, O. Otsinka vykorystannya shabloniv proektuvannya prohramnoho zabezpechennya [Evaluation of use of design templates in the software development]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer system, 2021, no. 1(97), pp. 103-111. DOI: 10.32620/reks.2021.1.09.

Konovalov, D., Radchenko, R., Kobalava, H., Forduy S., Khaldobin V. Rozrobka prohramnoho kompleksu ratsional'noho proektuvannya system okholodzhennya na osnovi termopresornykh tekhnolohiy [Development of software complex of rational design of cooling systems on the basis of thermopressor technologies]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer system, 2021, no. 1(97), pp. 103-111. DOI: 10.32620/reks.2021.1.05.




DOI: https://doi.org/10.32620/reks.2021.3.04

Refbacks

  • There are currently no refbacks.