Digitalization of city development: Urban Atlas on the basis of open data for cities of Ukraine
Abstract
Keywords
Full Text:
PDF (Українська)References
Urban Atlas. Available at: https://land.copernicus.eu/local/urban-atlas (accessed 26.07.2021).
ATLAS OF URBAN EXPANSION. Available at: http://www.atlasofurbanexpansion.org (accessed 26.07.2021).
Ramacher, M., Karl, M., Athanasopolou, E., Kakouri, A., Speyer, O., Matthias, V. A novel approach for dynamic population activity in urban-scale exposure estimates. Air Quality, EGU, General Assembly. Online, 2020, 4–8 May 2020. DOI: 10.5194/egusphere-egu2020-2576.
SMURBS. Available at: https://smurbs.eu/the-project (accessed 26.07.2021).
Shelestov, A., Kolotii, A., Lavreniuk, M., Yailymov, B., Shumilo, L., Korsunska Y. Smart City Services for Kiev City Within ERA-PLANET SMURBS Project. In 2019 IEEE 39th Interna-tional Conference on Electronics and Nanotechnology (ELNANO), 2019, pp. 784-788.
Micek, O., Feranec, J., & Stych, P. Land use/land cover data of the urban atlas and the cadastre of real estate: An evaluation study in the Prague Metropolitan Region. Land, 2020, vol. 9, no. 5, pp. 1-24. DOI: 10.3390/land9050153.
Lavreniuk, M., Kussul, N., Novikov, A. Deep learning crop classification approach based on coding input satellite data into the unified hyperspace. 38th International Conference on Electronics and Nanotechnology (ELNANO), 2018, pp. 239-244. DOI: 10.1109/ELNANO.2018.8477525.
Moskalenko, V., Zaretskyi, M., Korobov, A., Kovalskyi, Y., Shaiekhov, A., Semashko, V., Panyc, A. Model' ta metod navchannya dlya klasyfikatsiynoho analizu rivnya vody v stichnykh trubakh za danymy video inspektsiyi [Model and training method for water level classification in sewer pipes based on video inspection data]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2021, no. 2(98), pp. 4-15. DOI: 10.32620/reks.2021.2.01.
Kushnir, M., Tokarieva, K. Vykorystannya system shtuchnoho intelektu u zadachakh prohnozuvannya finansovykh indeksiv: ohlyad naukovykh dzherel [Artificial intelligence systems in the financial market predictions: literature review]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2020, no. 3(95), pp. 108-117. DOI: 10.32620/reks.2020.3.11.
Lavreniuk, M., Novikov, A. Oglyad metodiv mashy`nnogo navchannya dlya klasy`fikaciyi vely`ky`x obsyagiv suputny`kovy`x dany`x [Review of machine learning methods for Big satellite Data classification]. Sy`stemni doslidzhennya ta informacijni texnologiyi – System research and information technologies, 2018, no. 1, pp. 52-71. DOI: 10.20535/SRIT.2308-8893.2018.1.04.
Shelestov, A. Using the fuzzy-ellipsoid method for robust estimation of the state of a grid system node. Cybernetics and Systems Analysis, 2008, vol. 44, no. 6, pp. 847-854. DOI: 10.1007/s10559-008-9057-1.
Global Human Settlement Layer. Available at: https://ghsl.jrc.ec.europa.eu (accessed 26.07.2021).
Kussul, N., Lavreniuk, M., Shumilo, L. Deep Recurrent Neural Network for Crop Classification Task Based on Sentinel-1 and Sentinel-2 Imagery. In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, pp. 6914-6917. DOI: 10.1109/IGARSS39084.2020.9324699.
Lavreniuk, M., Kussul, N., Novikov, A. Deep learning crop classification approach based on sparse coding of time series of satellite data. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, pp. 4812-4815. DOI: 10.1109/IGARSS.2018.8518263.
OpenStreetMap. Available at: https://wiki.openstreetmap.org/wiki/Accuracy (accessed 26.07.2021).
Kussul, N., Lavreniuk, M., Kolotii, A., Skakun, S., Rakoid, O., & Shumilo, L. A workflow for Sustainable Development Goals indicators assessment based on high-resolution satellite data. International Journal of Digital Earth, 2020, vol. 2, no. 13, pp. 309-321. DOI: 10.1080/17538947.2019.1610807.
Shelestov, A., Kussul, N., Yailymov, B., Shumilo, L., Bilokonska, Y. Assessment of Land Consumption for SDG Indicator 11.3. 1 Using Global and Local Built-Up Area Maps. In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, pp. 4971-4974. DOI: 10.1109/IGARSS39084.2020.9324390.
Kussul, N., Shelestov, A., Skakun, S., & Kravchenko, O. Data assimilation technique for flood monitoring and prediction. Int. J. on Information Theory and Applications, 2008, vol. 15, no. 1, pp. 76-84.
DOI: https://doi.org/10.32620/reks.2021.3.02
Refbacks
- There are currently no refbacks.