Volodimir Olexijovych Rvachov, Tatiana Volodimirivna Rvachova, Evgenia Pavlovna Tomilova


In the paper we consider and solve the problem of construction of the so called tomic functions – the systems of infinitely differentiable  functions which while retaining many important properties of the shifts of atomic function up(x) such as locality and representation of algebraic polynomials  and being based on the atomic functions  nevertheless have nonuniform character and therefore  allow to take into account the inhomogeneous and  changing character of the data encountered in real world problems in particular in boundary value problems for partial differential equations with variable coefficients and complex geometry of domains in which these boundary value problems must be solved. The same class of tomic functions can be applied to processing,denoising and sparse storage of signals and images by lacunary interpolation. The lacunary or Birkhoff interpolation of functions in which the function is being restored by the values of derivatives of orderin points in which values of function and derivatives of order k<r are unknown is of great importance in many real world problems such as remote sensing. The lacunary interpolation methods using the tomic functions possesss important advantages over currently widely applied lacunary spline interpolation in view of infinite smoothness of tomic functions.The tomic functions can also be applied to connect (to stitch) atomic expansions with different steps on different intervals preserving smoothness and optimal approximation properties. The equations for of construction oftomic functions tofuj(x) –analogues of the basic functions of the generalized atomic Taylor expansions are obtained – which are needed for lacunary (Birkhoff) interpolation. For the applications in variational and collocation methods for solving bondary value problems for partial derivative and integral equations the tomic functions ftupr,j(x) are obtained that are analogues of B-splines and atomic functions fupn(x). Using similar methods, the tomic functions based on other atomic functions such as Ξn(x) can be obtained.


atomic functions; tomic functions; lacunary interpolation; Birkhoff interpolation; image processing and storage; variational methods; collocation method

Full Text:



Rvachev, V. L., Rvachev, V. A. Neklassicheskie metody teorii priblizhenii v kraevykh zadachakh [Nonclassical methods of approximation theory in boundary value problems]. Kyiv, “Naukova dumka” Publ., 1979. 196 p.

Rvachev, V. A. Compactly supported solutions of functional-differential equations and their applications. Russian Math. Surveys, 1990, vol. 45, no. 1, pp. 87-120.

Lemarié-Rieusset, P.G Interpolating scaling functions, Bernstein polynomials and nonstationary wavelets. Revista Matemática Iberoamericana, 1997, vol. 13, Iss. 1, pp. 91-188.

Rvachov, V. O., Rvachova, T. V., Tomilova, Ye. P. Application of the Generalized Taylor – Birkhoff Series for Solving of the Initial Value Problem for Ordinary Differential Equations. Otkrytye informatsionnye i komp'yuternye integrirovannye tekhnologii : sb. nauch. tr. KhAI – Open information and computer integrated technologies KhAI, 2018, no. 79, pp. 153-161.

Rvachova, T. V., Tomilova, Ye. P. Finding Antiderivatives with the Help of the Generalized Taylor Series. Otkrytye informatsionnye i komp'yuternye integrirovannye tekhnologii : sb. nauch. tr. KhAI – Open information and computer integrated technologies KhAI, 2016, no. 73, pp. 52-58.

Rvachov, V. O., Rvachova, T. V. On the construction of multimodal multiparameter exponential families probability laws. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2011, no. 4 (52), pp.72-76.

Rvachova, T. V. On a relation between the coefficients and the sum of the generalized Taylor series. Matematicheskaya fizika, analiz, geometriya, 2003, vol. 10, no. 2, pp. 262-268.

Rvachev, V. A., Rvacheva, T. V. Ob ermitovoi interpolyatsii s pomoshch'yu atomarnykh funktsii [On the hermite interpolation with the help of the atomic functions]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2010, no. 4(45), pp. 100-104.

Karlin, S., Karon, J. On Hermite-Birkhoff Interpolation. J. of Approximation Theory, 1972, no. 6, pp. 90-114.

Rvachova, T. V. Ob asimptotike bazisnykh funktsii obobshchennogo ryada Teilora [On the asymptotics of the basis functions of a generalized Taylor series]. Visnyk KhNU, ser. «Matematyka, prykladna matematyka i mekhanika» – KhNU Bulletin, ser. "Mathematics, Applied Mathematics and Mechanics", 2003, no. 602, pp. 94–104.

Jwamer, K., Jamal, B. Lacunary Interpolation Using Quartic B-Spline. General Letters in Mathematic, vol. 2, no. 3, June 2017, pp. 129-137.

Al Bayati, Abbas Y., Saeed, Rostam K., Hama-Salh, Faraidum K. Construction of Lacunary Sextic spline function Interpolation and their Applications. J. Edu. & Sci., 2010, vol. 23, no. 3, pp. 108-115. DOI: 10.33899/edusj.2010.58392.

Al Bayati, Abbas Y., Saeed, Rostam K., Hama-Salh, Faraidum K. Lacunary Interpolation by Quartic Splines with Application to Quadratures. Int. J. Open Problems Compt. Math., 2010, vol. 3, no. 3, pp. 315-328.

Ponomaryov, V., Gomeztagle, F. Super-Resolution Procedures in Image and Video Sequences based on Wavelet Atomic Functions. Modelling, Simulation and Identification, Sciyo, 2010, pp. 101-125. DOI: 10.5772/10016.

Ponomaryov, V., Sanchez-Ramirez, J. L, Juarez-Landin, C. Optimal Wavelet Filters Selection for Ultrasound and Mammography Compression. In Progress in Pattern Recognition, Image Analysis and Applications, Proceedings of 13th Iberoamerican Congress on Pattern Recognition, CIARP 2008, Havana, Cuba, September 9-12, 2008, pp. 62-69.

Kolodyazhny, V. M., Rvachev, V. A. Application of atomic functions to numeric simulation in electromagnetic theory. MSMW’O4 Symposium Proceedings, Kharkov, Ukraine, June 21-26, 2004, pp. 916-918.

Kuznichenko V. M. Obobshchennye ryady Teilora dlya klassa funktsii H(ρ,m,r) [Taylor generalized series for the class of functions H(ρ,m,r)]. Matematicheskie zametki – Mathematical Notes, 1989, vol. 46, no. 4, pp. 120-122.

Kozulić, V., Gotovac, Blaž B. Computational Modeling of Structural Problems Using Atomic Basis Functions. In Mechanical and Materials Engineering of Modern Structure and Component Design, Springer, 2015, pp. 207-229.

Brysina, I. V., Makarichev, V. A. Generalized atomic wavelets. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2018, no. 1(85), pp. 23-31. DOI: 10.32620/reks.2018.1.03.

Stoyan, Yu. G., Protsenko, V. S., Man’ko, G. P., Goncharyuk, I. V., Kurpa, L. V., Rvachev, V. A., Sinekop, N. S., Sirodzha, I. B., Shevchenko, A. N., Sheiko, T. I. Teorija R-funkcij i aktual’nye problemy prikladnoj matematiki [Theory of R-functions and current problems of applied mathematics]. Kyiv, “Naukova dumka” Publ., 1986. 264 p.

Makarichev, V. A. Approximation of periodic functions by mups(x). Math. Notes, 2013, vol. 93, no. 6, pp. 858-880.

Brysina, I. V., Makarichev, V. A. Atomic wavelets. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2012, no. 1(53), pp. 37-45.

Tsay, R. S. Analysis of financial time series. “John Wiley and Sons” Publ., 2010. 714 p.

Dung, D., Temlyakov, V., Ulrich, T. Hyperbolic Cross Approximation. Springer Nature, 2018. 218 p.

Jwamer, Karwan, H. F., Saeed, Rostam K. (0,1,3) Lacunary Interpolation with Splines of Degree Six. Journal of Applied and Industrial Sciences, 2013, vol. 1(1), pp. 21- 24.

Jwamer, Karwan H. F., Najim, Abdullah I. New Construction Seven Degree Spline Function to Solve Second Order Initial Value Problem. American Journal of Numerical, 2016, vol. 4, no. 1, pp. 11-20.

Jwamer, Karwan H. F., Ridha, G. Karem. Generalization of (0, 4) Lacunary Interpolation by Quantic Spline. Journal of Mathematics and Statistics, 2010, vol. 6, no. 1, pp. 72-78.

Viswanathan, P., Chand, A. K. B., Tyada, K. R. Lacunary Interpolation by Fractal Splines with Variable Scaling Parameters. Numer. Math. Theor. Meth. Appl., 2017, vol. 10, no. 1, pp. 65-83. DOI: 10.4208/nmtma.2017.m1514.

Jwamer, Karwan H. F., Karem, Ridha G. New Construction and New Error Bounds for (0, 2, 4) Lacunary Interpolation By Six Degree Spline. Raf. J. of Comp. & Math’s., 2011, vol. 8, no. 1, pp. 37-46. DOI: 10.33899/csmj.2011.163606.

Lang, Feng-Gong, Xu, Xiao-Ping. Error Analysis for a Noisy Lacunary Cubic Spline Interpolation and a Simple Noisy Cubic Spline Quasi Interpolation. Hindawi Publishing Corporation Advances in Numerical Analysis, 2014, Article ID 353194, pp. 1-8.

Singh, Kulbhushan. A Special Quintic Spline for (0,1,4) Lacunary Interpolation and Cauchy Initial Value Problem. Journal of Mechanics of Continua and Mathematical Sciences. Mech., 2019, vol. 14, no. 4, pp. 533-537.

Hamasalh, Faraidun K., Jwamer, Karwan H. F. Inhomogeneous Lacunary Interpolation and Optimization Errors Bound of Seventh Spline. American Journal of Applied Mathematics and Statistics, 2013, vol. 1, no. 3, pp. 46-51. DOI: 10.12691/ajams-1-3-3.

Karaballi, A. A., Sallam, S. Lacunary interpolation by quartic splines on uniform meshes. Journal of Computational and Applied Mathematics, 1997, no. 80, Iss. 1, pp. 97-104. DOI: 10.1016/S0377-0427(97)00015-0.

Srivastava, R. A New Kind of Lacunary Interpolation through g-Splines. International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007) Certified Organization, 2015, vol. 4, Iss. 8, pp. 7783-7786.

Kozulić, Vedrana., Gotovac, Blaž. Application of the Solution Structure Method in Numerically Solving Poisson’s Equation on the Basis of Atomic Functions. International Journal of Computational Methods, 2018, vol. 15, no. 05, Art. 1850033, pp. 1850033-1 1850033-25.

Dick, J., Pillichshammer, F., Suzuki, K., Ullrich, M., Yoshiki. T. Lattice-based integration algorithms: Kronecker sequences and rank-1 lattices. Annali di Matematica, 2018, no. 197, pp. 109–126. DOI: 10.1007/s10231-017-0670-3.



  • There are currently no refbacks.