FEATURES OF CONSTRUCTION OF POWER SUPPLY SYSTEM OF THE INVERSE MAGNETRON SPUTTERING SYSTEMS FOR THE FORMATION OF MULTICOMPONENT COATINGS (CONTROL METHOD OF DISTRIBUTION PROCESS AND ITS PRACTICAL REALIZATION)

Леонід Васильович Литовченко, Володимир Петрови Колесник, Олег Миколайович Чугай, Андрій Олександрович Бояркін, Денис Віталійович Слюсар, Микола Петрович Степанушкин, Сергій Володимирович Олійник

Abstract


It's shown the necessity to use functional coatings in engineering, which can be formed in many layers and contain a number of components what based on the analysis of literature data about ways to ensure the required resource of machine parts and mechanisms. Existing technologies and the corresponding equipment require the prefabricating of the alloys which the coatings are formed. This significantly limits the control of the coatings' composition. It's shown the advantage of ion-plasma technologies developed at National Aerospace University "Kharkiv Aviation Institute" over the existing technologies. In particular, due to the spraying of a large number of cathodes-targets, these technologies allow the formation of multicomponent coatings of almost any composition. When implementing ion-plasma technology for the formation of coatings, a decisive role plays the generator of the flow of particles of the coating material. It has been proposed to supply voltage to each generator element through a chain of resistors, the total resistance of which is regulated by the control system of the corresponding program to improve the power supply system of such a generator. Such an approach to the improvement of the power supply system of the technological generator of the coating material is implemented in the developed laboratory experimental-industrial process plant for the formation of a model coating of tungsten carbide. It was considered two possible schemes for creating resistive chains with regulated resistance. It was selected the scheme, which consists of a smaller number of elements. The important role of any resistive chain in the operation of the technological generator control system has been determined. It was proposed the optimal choice of the nominal values of the resistors included in the chain. The optimal choice of the nominal values of the resistors included in the chain has been proposed. The conducted analysis of experimental data carried out by the authors suggests that each such chain should have individual features, in particular, the boundaries and the step of resistance, the maximum power of heat losses. These and other parameters are usually determined experimentally.

Keywords


ion-plasma technology; power supply systems; control systems; multi-component coatings; tungsten carbide

References


Ivanov, V. E., Nechipurenko, E. P., Krivoruchko, V. M., Sagalovich, V. V. Kristallizatsiya tugoplavkikh metallov iz gazovoi fazy [Crystallization of refractory metals from the gas phase]. Moscow, Atomizdat Publ., 1974. 264 p.

Belen'kij, M. A, Ivanov, A. F. Jelektroosazhdenie metallicheskih pokrytij [Electrodeposition of metallic coatings]. Moscow, Metallurgija Publ., 1985. 288 p.

Ljahovich, L. S., Voroshnin, L. G., Papich, G. G., Shherbakov, Je. D. Mnogokomponentnye diffuzionnye pokrytija [Multicomponent diffusion coatings]. Minsk, Nauka i tehnika Publ., 1974. 288 p.

Majssela, L., Gljenga, R. Thin film technology, New York, 1970. 662 p. (Russ. ed. Elinson, M. I., Smolko, G. G. Tehnologija tonkih plenok. Vol. 1, 2. Moscow, «Sov. radio» Publ., 1977. 662 p.).

Kudinov, V. V., Ivanov, V. M. Nanesenie plazmoj tugoplavkih pokrytij [Plasma coating of refractory coatings.]. Moscow, Mashinostroenie Publ., 1981. 192 p.

Movchan, B. A., Malashenko, I. S. Zharostojkie pokrytija, osazhdaemye v vakuume [Heat-resistant coatings deposited in vacuum]. Kiev, Nauk. Dumka Publ., 1983. 232 p.

Andreev, A. A., Sablev, L. P., Grigor'ev, S. N. Vakuumno-dugovye pokrytija [Vacuum arc coating]. Kharkiv, NNC HFTI Publ., 2010. 317 p.

Danilin, B. S. Primenenie nizkotemperaturnoj plazmy dlja nanesenija tonkih plenok [The use of low-temperature plasma for the deposition of thin films]. Moscow, Jenergoatomizdat Publ., 1989. 328 p.

Movchan, B. A., Yakovchuk, K. Yu. High-Temperature Protective Coatings Produced by EB-PVD. Journal of Coating Science and Technology, 2014, no. 1, pp. 96 – 110.

Jakovchuk, K. Ju. Teploprovodnost' i termo-ciklicheskaja dolgovechnost' kondensacionnyh ter-mobar'ernyh pokrytij [Thermal conductivity and thermal cyclic durability of condensation thermal barrier coatings]. Sovrem. Jelektrometallurgija, 2014, no. 4, pp. 25 – 31.

Sobol', O. V., Andreev, A. A., Gorban', V. F., Krapivka, N. A., Stolbovoj, V. A., Serdjuk, I. V., Fil'chikov, V. E. O vosproizvodimosti odnofaznogo strukturnogo sostojanija mnogojelementnoj vysokojentropijnoj sistemy Ti−V−Zr−Nb−Hf i vysokotverdyh nitridov na ee osnove pri ih formirovanii vakuumno-dugovym metodom [On the reproducibility of the single-phase structural state of the multi-element high-entropy system Ti – V – Zr – Nb – Hf and highly solid nitrides based on it during their formation by the vacuum-arc method]. Zhurnal tehnicheskoj fiziki, 2012, vol. 38, no. 13, pp. 41 – 48.

Firstov, S. A., Gorban', V. F., Danilenko, N. I., Karpec, M. V., Andreev, A. A., Makarenko, E. S. Termostabil'nost' svojstv nitridnyh pokrytij na osnove mnogokomponentnogo splava Ti-V-Zr-Nb-Hf [Thermal stability of the properties of nitride coatings based on the multicomponent alloy Ti-V-Zr-Nb-Hf]. Poroshkovaja metallurgija, 2013, no. 9/10, pp. 93 – 102.

Chang, K. S., Chen, K. T., Hsu, C. Y., Hong, P. D. Growth (AlCrNbSiTiV)N thin films on the interrupted turning and properties using DCMS and HIPIMS system. Applied Surface Science, 2018, vol. 440, pp. 1 –7.

Kablov, E. N., Mubojadzhan, S. A. Zharostojkie i teplozashhitnye pokrytija dlja lopatok turbin visokogo davlenija perspektivnyh GTD [Heat-resistant and heat-shielding coatings for low-viscose high-pressure turbines of promising GTE]. Aviacionnye materialy i tehnologii, 2012, no. 5, pp. 60 – 70.

Volhovskij, A. O., Blinkov, I. V., Eljutin, A. V., Podstjazhonok, O. B. Vysokojeffektivnye iznosostojkie ionno-plazmennye pokrytija dlja rezhushhego tverdosplavnogo instrumenta, rabotajushhego v uslovijah postojannyh nagruzok [High-performance wear-resistant ion-plasma coatings for carbide cutting tools operating under constant load conditions]. Metallurg, 2010, no. 6, pp. 55 – 59.

Fiziko-tehnicheskie osnovy sozdanija plazmenno-ionnyh istochnikov i uskoritelej dlja kosmicheskih i tehnologicheskih celej [Physical and technical basis for creating plasma-ion sources and accelerators for space and technological purposes]. Otchet o NIR (zakljuchitel'nyj): Д402-28/2006-Ф / Nac. ajerokosm. un-t «Har'k. aviac. in-t» ; ruk. Kolesnik V. P; ispoln. Oranskij A. I. [i dr.]. Kharkiv, 2008. 300 p. ДР 0106U001056.

Isakov, A. V., Kolesnik, V. P., Okhrimovskyy, A. M., Stepanushkin, N. P., Taran, A. A. Numerical simulation of abnormal glow discharge processes in crossed electric and magnetic fields. Problems of atomic science and technology, 12/2014, no. 6(94)(20), pp. 171 – 174.

Thornton, J. A. Penfold A. S. Cylindrical Magnetron Sputtering. Thin film processes. Academic Press, 1978, pp. 76-110.

DSTU IEC 60063:2015. Rezistori ta kondensatori. Rjadi preferencіjnih chisel [State Standard 60063:2015. Resistors and capacitors. Rows of preferential numbers]. Kyiv, Derzhspozhivstandart Ukraїni Publ., 2016. 13 p.




DOI: https://doi.org/10.32620/reks.2019.2.09

Refbacks

  • There are currently no refbacks.