ANALYSIS OF METHODOLOGICAL FOUNDATIONS OF ENTERPRISES’ INFORMATION-MANAGING SYSTEMS FORMATION IN INDUSTRY 3.0: MOVEMENT TOWARDS INDUSTRY 4.0

Серій Ілліч Доценко, Олег Олександрович Ілляшенко, Сергій Каменський, Діна Рамазіївна Купрейшвілі, Вячеслав Сергійович Харченко

Abstract


The analysis of the level of development of industry digitalization in Industry 3.0 has shown that the main methodology of the formation of production management systems is recognized by the methodology of software and target management, which is the basis for the developed ODAS draft. The basic method of automated control systems modeling in Industry 3.0 is the method of forming a structured hierarchy. In the beginning, a hierarchy of goals is formed, and then the hierarchy of the organizational system is determined in the following identical forms of representation, namely: tasks; ranks; operations. Such an approach provides for the definition of the composition and content of operations that need to be implemented in management. The main problem of the hierarchical approach in the methodology of programmatic planning and management is the problem of forming the goal of the activity. In this approach, there is no requirement for the formation of an integral (general) purpose of the activity in the explicit form and hierarchy of goals. Simultaneously with the method of software-targeted management, the method of an architectural approach to the structuring of the system of production control dialogue was developed. The main advantage of this approach is that the architecture of the structural graph of the system does not depend on the organizational structure of the investigated organization. On this basis, a five-level structural graph of the control system was formed. For each level of management, the functional structure of the deciding system is formed. The crucial point is that the developed architecture of the functional structure of the deciding system is universal for all five layers of management and has the appropriate mathematical justification. The fundamental difference between this approach is that in the architecture of the decisive system, the model of the control object for the corresponding level is used. The structural representation of the software-target management and the functional representation in the architectural approach are integral parts of the integrated representation of the enterprise. It is the architecture of the functional structure of the control system for the layer Δ corresponding to the architecture of the intelligent control system. It follows that the development of intelligent production management systems for Industry 4.0 is not possible outside the theory of intellectual systems, which in turn is based on the theory of functional systems.

Keywords


information management system; methodology; hierarchy; structure; functions; representations

References


Yurchak, O. INDUSTRY 4.0 – yak uniknuti plutanini ta ob’єdnatis' [INDUSTRY 4.0 – how to avoid confusion and unite]. Available at: https://industry4-0-ukraine.com.ua/2017/03/06/industry-4-0-%D1%8F%D0%BA-%D1%83%D0%BD%D0%B8%D0%BA%D0%BD%D1%83%D1%82%D0%B8-%D0%BF%D0%BB%D1%83%D1%82%D0%B0%D0%BD%D0%B8%D0%BD%D0%B8-%D1%82%D0%B0-%D0%BE%D0%B1%D1%94%D0%B4%D0%BD%D0%B0/ (accessed 01.05.2019) (in Ukrainian).

Glushkova, V., Zhabіn, S. OGAS V. M. Glushkova: Istoriya proekta postroeniya informatsionnogo obshchestva [OGAS V. M. Glushkova: History of the Information Society Building Project]. Available at: https://commons.com.ua/uk/ogas-v-m-glushkova-istoriya-proekta-postroeniya-informatsionnogo-obshhestva/ (accessed 01.05.2019) (in Russian).

Kitov, A. I. Elektronnye tsifrovye mashiny [Electronic digital machines]. Moscow, Sov. Radio Publ., 1956. 358 p.

Kitov, A. I. Elektronnye vychislitel'nye mashiny [Electronic computers]. Moscow, Znanie Publ., 1958. 31 p.

Pospelov, G. S., Irikov, V. A. Programmno-tselevoe planirovanie i upravlenie. (Vvedenie) [Program-oriented planning and management. (Introduction)] Moscow, Sov. Radio Publ., 1976. 440 p.

Mesarovich, M. D., Mako, D. Takakhara, I. Teoriya ierarkhicheskikh mnogourovnevykh sistem [Theory of Hierarchical Multilevel Systems]. Moscow, Mir Publ., 1973. 344 p.

Dotsenko, S. I. Uroky kryzy klasychnoyi kibernetyky: prychyny ta sutnist' [Lessons from the crisis of classical cybernetics: causes and essence]. Radioelektronni i komp'uterni sistemi - Radioelectronic and computer systems, 2018, no. 4(88), pp. 4-16.

Grave, P. S., Rastrigin, L. A. Kibernetika i psikhika : monografiya [Cybernetics and the psyche: a monograph]. Cybernetics and the psyche: a monograph In-t elektroniki i vychislit. tekhniki. Akad. nauk LatvSSR, Riga, Zinatne Publ., 1973. 96 p.

Yastrebenetskii, M. A. Vasil'chenko, V. N. Regulirovanie bezopasnosti i avtomaticheskoe regulirovanie [Safety regulation and automatic regulation]. Yadernaya i radiatsionnaya bezopasnost', 2008, no. 4, pp. 51–57.

Yastrebenetskii, М. A. Regulirovanie yadernoi i radiatsionnoi bezopasnosti kak zadacha sistemnogo analiza [Regulation of nuclear and radiation safety as a system analysis task]. Yaderna ta radіatsіina bezpeka, 2010, no. 3 (47), pp. 25–32.

Kharchenko, V. S., Sychev, V. A. ASU ekspluatatsiei kriticheskikh ob"ektov v kontekste bezopasnosti: sistemnyi podkhod [ACS for the operation of critical facilities in the security context: a systematic approach]. Ekologіya і resursi : zb. nauk. pr., Rada nats. bezpeki і oboroni Ukraїni, Іn-t problem nats. Bezpeki, 2006, no. 15, pp. 163–177.

Mamikonov, A. G. (ed.) Proektirovanie podsistem i zven'ev avtomatizirovannykh sistem upravleniya [Designing subsystems and links of automated control systems]. Moscow, Vysshaya shkola Publ., 1975. 248 p.

Mel'tser, M. I. Dialogovoe upravlenie proizvodstvom (modeli i algoritmy) [Interactive production management (models and algorithms)]. Moscow, Finansy i statistika Publ., 1983. 240 p.

Epshtein, V. L., Senichkin, V. I. Yazykovye sredstva arkhitektora ASU [Language tools of the architect ACS]. Moscow, Energiya Publ., 1979. 137 p.

Mesarovich, M., Takakhara, Ya. Obshchaya teoriya sistem: matematicheskie osnovy [General Systems Theory: Mathematical Foundations]. Moscow, Mir Publ., 1978. 311 p.

Dovgyallo, A. M. Dialog pol'zovatelya i EVM. Osnovy proektirovaniya i realizatsii [Dialogue of the user and the computer. Basics of design and implementation]. Kiev, Nauk. Dumka Publ., 1981. 232 p.

Anokhin, P. K. Printsipial'nye voprosy obshchei teorii funktsional'nykh sistem [The fundamental questions of the general theory of functional systems] V kn. Ocherki po fiziologii funktsional'nykh sistem [In the book. Essays on the physiology of functional systems]. Moscow, Meditsina Publ, 1975, pp. 17–62.

Chechkin, A. V. Slabo formal'nye sistemy [Weakly formal systems]. Intellektual'nye sistemy, Moscow, MGU, 2007, vol. 11, no. 1-4, pp. 137–158. Available at: http://www.intsys.msu.ru/magazine/archive/vll%281-4%29/chechkin-l37-158.pdf. (accessed 01.05.2019) (in Russian).

Pupkov, K. A., Kon'kov, V. G. Intellektual'nye sistemy (Issledovanie i sozdanie). Ucheb. posobie [Intelligent Systems (Research and Creation)]. Moscow, Izd-vo MGTU im. N. E. Baumana Publ., 2001. 194 p.

ISO 14258:1998 "Industrial automation systems – Concepts and rules for enterprise models", IDT. Available at: https://files.stroyinf.ru/Data/484/48408.pdf (accessed 01.05.2019)

Volkova, V. N., Voronkov, V. A., Denisov, A. A. Teoriya sistem i metody sistemnogo analiza v upravlenii i svyazi [Systems theory and systems analysis methods in management and communication]. Moscow, Radio i svyaz' Publ., 1983. 248 p.

GOST R 54136-2010 Sistemy promyshlennoi avtomatizatsii i integratsiya. Rukovodstvo po primeneniyu standartov, struktura i slovar'. Natsional'nyi standart Rossiiskoi Federatsii Data vvedeniya 21.12.2010, Moscow, 2012. 32 p. Available at: http://vsegost.com/Catalog/51/51439.shtml (accessed 01.05.2019)

Pasport spetsial'nosti 05.13.06 – Informatsiyni tekhnolohiyi [Specialty passport 05.13.06 - Information technologies]. Available at: https://zakon.rada.gov.ua/rada/show/v0047330-07. (accessed 01.05.2019)

Reference Architecture Model Industrie 4.0 (RAMI4.0). Available at: https://www.zvei.org/fileadmin/user_upload/Themen/Industrie_4.0/Das_Referenzarchitekturmodell_RAMI_4.0_und_die_Industrie_4.0-Komponente/pdf/5305_Publikation_GMA_Status_Report_ZVEI_Reference_Architecture_Model.pdf. (accessed 01.05.2019).

DIN V EVN 40003-1991 Computer Integrated Manufacturing (CIM); systems architecture; framework for enterprise modeling. Available at: https://infostore.saiglobal.com/en-gb/Standards/DIN-V-ENV-40003-1991-431120_SAIG_DIN_DIN_973998/ (accessed 01.05.2019).

Industry 4.0 Standards Supporting Interoperability of Industry 4.0 Standards by means of Semantic Technologies. For the latest version of Standards Landscape visit our GitHub Page. Available at: http://i40.semantic-interoperability.org/index.html#portfolio. (accessed 01.05.2019).

Grangel-González, Irlán., Baptista, Paul., Halilaj, Lavdim., Lohmann, Steffen., Vidal, Maria-Esther., Mader, Christian., Aue, Sören. The Industry 4.0 Standards Landscape from a Semantic Integration Perspective. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 12-15 Sept. 2017. Available at: https://ieeexplore.ieee.org/document/8247584/. DOI: 10.1109/ETFA.2017.8247584 (accessed 01.05.2019).




DOI: https://doi.org/10.32620/reks.2019.2.03

Refbacks

  • There are currently no refbacks.