MODEL AND TRAINING ALGORITHM OF MALWARE TRAFFIC DETECTOR BASED ON MODIFICATION OF GROWING NEURAL GAS
Abstract
Keywords
Full Text:
PDF (Українська)References
Skrzewski, M. Flow Based Algorithm for Malware Traffic Detection. Proc. of the 18th Conference Computer Networks (Communications in Computer and Information Science), Ustroń, Poland, 2011, vol. 160, pp. 271–280.
DOI: https://doi.org/10.1007/978-3-642-21771-5_29.
Berkay Celik, Z., Walls, R. J., McDaniel, P., Swami, A. Malware traffic detection using tamper resistant features. Proc. of the IEEE MILCOM 2015 – 2015 IEEE Military Communications Conference, Tampa, FL, 2015, pp. 330–335.
DOI: https://doi.org/10.1109/MILCOM.2015.7357464.
Iglesias, F., Zseby, T. Analysis of network traffic features for anomaly detection. Machine Learning, 2015, vol. 101, i. 1–3, pp. 59–84.
DOI: https://doi.org/10.1007/s10994-014-5473-9.
Yousefi-Azar, M., Varadharajan, V., Hamey, L., Tupakula, U. Autoencoder-based feature learning for cyber security applications. Proc. of the 2017 International Joint Conference on Neural Networks (IJCNN). Anchorage, Alaska, USA, 2017, pp. 3854–3861.
DOI: https://doi.org/10.1109/IJCNN.2017.7966342.
Wang, W. Zhu, M., Zeng, X., Ye, X., Sheng, Y. Malware traffic classification using convolutional neural network for representation learning. Proc. of the 31st International Conference on Information Networking (ICOIN 2017). Da Nang, Vietnam, 2017, pp. 712–717. DOI: https://doi.org/10.1109/ICOIN.2017.7899588.
Zhao, B., Lu, H., Chen, S., Liu, J., Wu,D. Convolutional neural networks for time series classification. Journal of Systems Engineering and Electronics, 2017, vol. 28, no. 1, pp. 62–169.
DOI: https://doi.org/10.21629/JSEE.2017.01.18.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. Going deeper with convolutions. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 1–9. DOI: https://doi.org/10.1109/CVPR.2015.7298594.
Feng, Q. Chen, C. L. P., Chen, L., Compressed auto-encoder building block for deep learning network. Proc. of the 3rd International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS), Jinzhou, 2016, pp. 131–136.
DOI: https://doi.org/10.1109/ICCSS.2016.7586437.
Labusch, K., Barth, E., Martinetz, T. Sparse coding neural gas: learning of overcomplete data representations. Neurocomputing, 2009, vol. 72, i. 7–9, pp. 1547–1555.
DOI: https://doi.org/10.1016/j.neucom.2008.11.027.
Mrazova, I., Kukacka, M. Image Classification with Growing Neural Networks. International Journal of Computer Theory and Engineering, 2013, vol. 5, no. 3, pp. 422–427.
DOI: https://doi.org/10.7763/IJCTE.2013.V5.722.
Palomo, E. J., López-Rubio, E. The Growing Hierarchical Neural Gas Self-Organizing Neural Network. IEEE Transactions on Neural Networks and Learning System, 2017, vol. 28, no. 9, pp. 2000–2009. DOI: https://doi.org/10.1109/TNNLS.2016.2570124.
Kim, S., Yu, Z., Man Kil, R., Lee, M. Deep learning of support vector machines with class probability output networks. Neural Networks, 2015, vol. 64, pp. 19–28.
DOI: https://doi.org/10.1016/j.neunet.2014.09.007.
Dovbysh, A. S., Rudenko, M. S. Information-extreme learning algorithm for a system of recognition of morphological images in diagnosing oncological pathologies. Cybernetics and Systems Analysis, 2014, vol. 50, i. 1, pp. 157–162.
DOI: https://doi.org/10.1007/s10559-014-9603-y.
Moskalenko, V., Pimonenko, S. Optimizing the parameters of functioning of the system of management of data center IT infrastructure. Eastern-European Journal of Enterprise Technologies, 2016, vol. 5, i. 2 (83), pp. 21–29.
DOI: https://doi.org/10.15587/1729-4061.2016.79231.
DOI: https://doi.org/10.32620/reks.2018.3.02
Refbacks
- There are currently no refbacks.