APPLYING OF CLUSTERING METHODS IN THE INFORMATION-ANALYTICAL SYSTEM

Е. С. Яшина, М. А. Щербак

Abstract


The article is dedicated to the applying of data clustering methods in the development of information-analytical systems. Review of the existing clustering methods is executed. The algorithms that are based on the modified statistical (k-means) and hierarchical clustering methods are offered. The architecture of information-analytical system as a web-application that uses the proposed methods and algorithms for processing data received from various sources is developed. On the basis of these algorithms is made development of applications for sets of objects clustering.

Keywords


analysis, clustering, cluster analysis, hierarchical clustering, k-means.

References


Zagoruiko, N. G. Prikladnye metody analiza dannykh i znanii [Applied methods of data analysis and knowledge]. Novosibirsk, IM SO RAN Publ., 1999. 270 p.

Borisova, I. A. Metody resheniya zadach raspoznavaniya obrazov kombinirovannogo tipa: diss. .. kand. tekhn. nauk : 05.13.17 [Methods for solving problems of pattern recognition combined type: the dissertation .. candidate of technical sciences]. Novosibirsk, 2008. 126 p.

Mendel', I. D. Klasternyi analiz [Cluster analysis]. Moscow, Finansy i statistika Publ., 1988. 176 p.

Kaufman, L., Rousseeuw, P. J. Finding groups in data: an introduction to cluster analysis. John Wiley & Sons Publ., 2009. 368 p.

Mirkin, B.G. Metody klaster-analiza dlya podderzhki prinyatiya reshenii: obzor [Methods of cluster analysis for decision support: a review]. Moscow, Izddom Nats. issl. un-ta «Vysshaya shkola ekonomiki» Publ., 2011. 88 p.

Zhambyu, M. Ierarkhicheskii klaster-analiz i sootvetstviya [Hierarchical cluster analysis and compliance]. Moscow, Finansy i statistika Publ., 1988. 345 p.

Zhou, F., De la Torre, F., Hodgins, J. K. Hierarchical aligned cluster analysis for temporal clustering of human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, vol. 35, no. 3, pp. 582-596.

Rao, Y., Shen, K., Rajagopal, S., Parikh, K. S. Patient Characteristic Cluster Analysis Predicts Response To Therapy To Oral Treprostinil In Pulmonary Arterial Hypertension. D53. The Promised Land: Clinical Studies In Pulmonary Hypertension. American Thoracic Society Publ., 2016, pp. A7340-A7340.

Tsitsimpelis, I., Taylor, C. J. Partitioning of indoor airspace for multi-zone thermal modelling using hierarchical cluster analysis. 2015 European Control Conference (ECC 2015), IEEE Publ., 2015, pp. 410-415.

Lagutin, M. B. Naglyadnaya matematicheskaya statistika [Transparent Mathematical Statistics]. Moscow, P-tsentr Publ., 2003. 210 p.

Yano, K., Matsuo, A. Labeling FeatureOriented Software Clusters for Software Visualization Application. 2015 Asia-Pacific Software Engineering Conference (APSEC). IEEE Publ., 2015, pp. 354-361.

Zhuravlev, I. Yu., Ryazanov, V. V., Sen'ko, O. V. Raspoznavanie. Matematicheskie metody. Programmnaya sistema. Prakticheskie primeneniya [Recognition. Mathematical methods. Software system. Practical applications]. Moscow, FAZIS Publ., 2006. 176 p.


Refbacks

  • There are currently no refbacks.