LUMINOUS FLUX MODULATOR WITH KNOWN OPTICAL PULSE SHAPE

Антон Александрович Букарев, Виктор Александрович Лесной, Александр Петрович Кислицын

Abstract


The article describes the developed and tested luminous flux modulator (LFM). LFM is designed to identify and study the dynamic distortions of optoelectronic devices (OED) with high temporal resolution. Such OED are capable to register optical radiation at fast processes (for example: pulse action of ionic beams, laser influence, electric discharges).

The basis of the LFM's work is the mechanical principle of modulation, which makes it possible to preserve the shape of the optical signal with controlled changes in the duration of the optical signal. In addition, the applied LFM scheme allows a change in the spectral composition of optical radiation

In the implemented device, the optical signal has a trapezoidal shape, which makes it possible to determine quite simply the quantities that characterize the dynamic distortions of the OED (transient response, relaxation time, etc.).

The modulator allows you to adjust the duration of trapezoidal optical pulses in the range from 0.69 ms (t1) to 0.11 ms (t2). In this case, the duration of the front and the cut are, respectively, τF1 = 54.8 μs and τC1 = 65.7 μs for t1; τF2 = 8.73 μs and τC2 = 10.5 μs for t2.

The LFM was tested using OED based on a photoelectric multiplier (PMT), which, as is known, is considered to be a high-speed optical receiver. The experiment was carried out in two modes of operation of the power amplifier: in quasi-static and in dynamic modes. In quasi-static mode, with a controllably longer duration of the optical pulse (>> 1 s) and no dynamics of the process, the true form of the optical signal was obtained. In the dynamic mode, a signal was recorded whose shape is distorted with respect to the quasi-static signal, which indicates the presence of dynamic distortions.

The received result testifies to the efficiency of the luminous flux modulator, allows to register and study the dynamic distortions of optoelectronic devices.


Keywords


luminous flux modulator; dynamic distortion; optoelectronic devices

References


Remnev, G. E. Modifikatsiya materialov s ispol'zovaniem moshchnykh ionnykh puchkov [Materials modification using intense ion beams]. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov – Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2000, vol. 303, iss. 3, pp. 59–70.

Ul'yanitskii, V. Yu., Nenashev, M. V., Kalashnikov, V. V., Ibatullin, I. D., Ganigin, S. Yu., Yakunin, K. P., Rogozhin, P. V., Shtertser, A. A. Opyt issledovaniya i primeneniya tekhnologii naneseniya detonatsionnykh pokrytii [Experience of research and application of detonation coatings technology]. Izvestiya Samarskogo nauchnogo tsentra RAN – Tidings of the Samara Scientific Center of the Russian Academy of Sciences, 2010, vol. 12, no. 1(2), pp. 569–575.

Matthews, S. Shrouded plasma spray of Ni-20Cr coatings utilizing internal shroud film cooling. Surface & Coatings Technology, 2014, vol. 303, iss. 3, pp. 56-74. doi: 10.1016/j.surfcoat.2014.03.050.

Feist, J. P., Sollazzo, P. Y., Berthier, S., Charnley, B., Wells, J., Application of an Industrial Sensor Coating System on a Rolls-Royce Jet Engine for Temperature Detection. Journal of Engineering for Gas Turbines and Power, 2013, vol. 135, no. 012101. 9 p. doi: 10.1115/1.4007370.

Kislitsyn, A. P., Podgorskii, S. Yu., Taran, A. A. Raspredelenie temperatury v aktivnom sloe oksidnogo katoda pri nepreryvnom i impul'snom tokootborakh [Temperature distribution in the active layer of the oxide cathode during continuous and pulsed current sampling]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya – Aerospace Engineering and Technology, 2012, no. 3 (90), pp. 47–55.

Akhmanov, S. A., Vysloukh, V. A., Chirkin, A. S. Optika femtosekundnykh lazernykh impul'sov [Optics of Femtosecond Laser Pulses]. Moscow, Nau-ka Publ., 1988. 312 p.

Belyavin K. E., Min'ko D. V., Kuznechik O. O., Kasparov K. N., Krasnobaev A. B. Fotoemissionnyi pirometr dlya izmereniya temperatury poverkhnosti nagretogo tela [Photoemission pyrometer for measuring the surface temperature of a heated body]. Patent RB, no. 10993, 2008. 8 p.

Kuznechik O. O., Min'ko D. V., Gafo Yu. N., Golyakov M. V., Belyavin K. E. Fotoemissionnoe ustroistvo dlya izmereniya temperatury poverkh-nosti nagretogo tela pri bystroprotekayushchikh teplovykh protsessakh [Photoemission device for measuring the surface temperature of a heated body with fast thermal processes]. Patent RB, no. 12525, 2009. 5 p.

Pavlov, A. V. Optikoelektronnye pribory (Osnovy teorii i rascheta) [Optoelectronic devices (Fundamentals of Theory and Calculation)]. Moscow, Energiya Publ., 1974. 360 p.

Pikhtin, A. N. Opticheskaya i kvantovaya elektronika: Ucheb. dlya vuzov [Optical and Quantum Electronics]. Moscow, Vyssh. shk. Publ., 2001. 573 p.

GOST 16465-70. Mezhgosudarstvennyi standart. Signaly radotekhnicheskie izmeritel'nye. Terminy i opredeleniya [Interstate standard. Radio-technical measuring signals. Terms and definitions]. Mos-cow, Standartinform Publ., 2001. 16 p.




DOI: https://doi.org/10.32620/reks.2017.4.05

Refbacks

  • There are currently no refbacks.