EXPLORATION OF POSSIBILITY TO INCREASE PERFORMANCE OF METHOD FOR NOISE VARIANCE EVALUATION IN DIGITAL IMAGES

Виктория Валерьевна Абрамова, Сергей Клавдиевич Абрамов, Владимир Васильевич Лукин, Галина Анатольевна Проскура

Abstract


The method for blind noise variance evaluation based on analysis of distributions of discrete cosine transform coefficients is considered. The possibility to improve computational efficiency of this method by means of decreasing number of processed blocks is explored. Numerical simulation results obtained for large image database have shown that if partly overlapping or non-overlapping blocks are used it is possible to essentially decrease time needed for obtaining noise variance estimates wherein for low- and medium textured images the decreasing of noise variance estimation accuracy is negligible.


Keywords


digital image processing; additive noise; blind noise variance estimation; increasing performance

References


Wu, H. R., Lin, W., Karam, L. An Overview of Perceptual Processing for Digital Pictures, Proc of ICME, Melbourne, Australia, 2012, pp. 113-120.

Abramov, S., Zabrodina, V., Lukin, V., Vozel, B., Chehdi, K. Methods for Blind Estimation of the Variance of Mixed Noise and Their Performance Analysis, Numerical Analysis – Theory and Application, InTech, 2011, pp. 49-70.

Lukin, V. V., Melnik, V. P., Pogrebniak, A. B., Zelensky, A. A., Saarinen, K. P., Astola, J. T. Digital adaptive robust algorithms for radar image filtering, Journal of Electronic Imaging, 1996, no. 5(3), pp. 410-421.

Abramova, V., Abramov, S., Lukin, V., Egiazarian, K., Astola, J. On required accuracy of mixed noise parameter estimation for image enhancement via denoising. EURASIP JIVP, 2014, vol. 2014, no. 1, pp. 1-16.

Huber, P. J. Robust Statistics. NY(USA), John Wiley & Sons Publ., 2004. 308 p.

Kurz, T. H., Buckley, S. L. A Review Of Hyper-spectral Imaging In Close Range Applications, XIII ISPRS Congress, Prague, Chech Republic, vol. XLI-B5, pp. 865-870.

Uss, M., Vozel, B., Lukin, V., Abramov, S., Baryshev, I., Chehdi, K., Image Informative Maps for Estimating Noise Standard Deviation and Texture Parameters, EURASIP Journal on Advances in Signal Processing 2011, Article ID 806516, doi:10.1155/2011/806516. Available at: https://link.springer.com/article/10.1155/2011/806516 (accessed 23.06.2017).

Kozhemyakin, R. A., Abramova, V. V., Abramov, S. K. Fil'tratsiya izobrazhenii, iskazhennykh smes'yu signal'no-zavisimykh i signal'no-nezavisimykh pomekh [Filtering of images corrupted by mixed signal-dependent and signal-independent noise]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2012, no. 2(54), pp. 58 - 65.

Abramova, V. V., Abramov, S. K., Lukin, V. V. Mnogoetapnyi avtomaticheskii metod otsenivaniya dispersii additivnogo shuma s ispol'zovaniem detektora odnorodnykh uchastkov na osnove momenta chetvertogo poryadka [Multi-stage method for blind additive noise variance evaluation using homogeneous region detector based on fourth order moment]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2013, no. 4(63), pp. 15-24.

Tampere Image Database 2008 TID2008, version 1.0. Available at: http://ponomarenko.info/tid2008.htm (accessed 23.06.2017)


Refbacks

  • There are currently no refbacks.