Impact of using various x-ray dataset in detecting tuberculosis based on deep learning

Muhammad Irhamsyah, Qurrata A’yuni, Khairun Saddami, Nasaruddin Nasaruddin, Khairul Munadi, Fitri Arnia

Abstract


The subject matter is that the characteristics of tuberculosis are difficult to study visually. Therefore, a computer-aided system based on deep learning can be applied to X-ray image recognition. Many studies have been conducted in this area but have yet to achieve a high accuracy rate. The goal of this study is to determine the effect of using various datasets in developing deep learning models. The tasks to be solved include exploring various deep learning architectures and deep fine-tuning hyperparameters, as well as using various dataset sources. The method used is the development of a deep learning model of convolutional neural network (CNN) using transfer learning to classify X-ray images into binary classes of normal and tuberculosis (TB). The CNN architectures used are the pretrained networks of ResNet and EfficientNet, along with their variants. The pre-trained network was trained on a dataset obtained from four sources: Shenzhen, Montgomery, RSNA CXR, and Belarus. The dataset is divided into three schemes: Scheme one consists of the Shenzhen dataset with low-quality X-ray images; Scheme two is the Montgomery, RSNA, and Belarus datasets that show good contrast in the indicated TB area; and Scheme three contains datasets from all sources to allow for more datasets to be learned. The augmentation, dropout, and L2 regularization methods were also applied to enhance learning performance. The following results were obtained: the models performed better with the high-quality X-ray images in Scheme Two but not with the large dataset in Scheme Three. Regarding network performance, the models resulting from ResNet-101 and EfficientNetB0 outperformed the others with good fit learning and capability in recognizing X-ray images with an accuracy rate of 99.2%. In conclusion, the best approach to enhance learning performance is to use high-quality input and apply regularizations.


Keywords


Tuberculosis; Covolutional Neural Network; ResNet; EfficientNet

Full Text:

PDF

References


Miggiano, R., Rizzi, M., & Ferraris, D.M. Mycobacterium tuberculosis Pathogenesis, Infection Prevention and Treatment. Pathogens, 2020, vol. 9, iss. 5, article no. 385. DOI: 10.3390/pathogens9050385.

Ayaz, M., Shaukat, F., & Raja, G. Ensemble learning based automatic detection of tuberculosis in chest X-ray images using hybrid feature descriptors. Phys. Eng. Sci. Med., 2021, vol. 44, iss 1, pp. 183–194. DOI: 10.1109/ACCESS.2020.3031384.

Varshni, D., Kartik, T., Lucky, A., Rahul, N., & Ankush, M. Pneumonia Detection Using CNN based Feature Extraction. IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). Coimbatore, India: IEEE, 2019, pp. 1–7. DOI: 10.1109/ICECCT.2019.8869364.

Toraman, S., Alakus, T. B., & Turkoglu, I. Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks. Chaos Solitons Fractals, 2020, vol. 140, article no. 110122. DOI: 10.1016/j.chaos.2020.110122.

Yusoff, M., Saaidi, M. S. I., Amirul Sadikin Md. Afendi, S Md., & Hassan, A. Tuberculosis X-Ray Images Classification based Dynamic Update Particle Swarm Optimization with CNN. Journal of Hunan University Natural Sciences, 2021, vol. 48, iss. 9. ISSN 1674-2974.

Rahman,T., Khandakar, A., Abdul Kadir, M., Islam, K. R., Islam, K. F., Mazhar, R., Hamid, T., Islam, M. T., Kashem, S., Ayan, M. A., & Chowdhury, M. E. H. Reliable Tuberculosis Detection Using Chest X-Ray With Deep Learning, Segmentation and Visualization. IEEE Access, 2020, vol. 8, pp. 191586–191601. DOI: 10.1109/ACCESS.2020.3031384.

Munadi, K., Muchtar, K., Maulina, N., & Pradhan. B. Image Enhancement for Tuberculosis Detection Using Deep Learning. IEEE Access, 2020, vol. 8, pp. 217897–217907. DOI: 10.1109/ACCESS.2020.3041867.

Harahap, M., Pasaribu, A. P. S., Sinaga, D. R., Sipangkar, R., & Samuel, S. Classification of Tuberculosis Based on Lung X-Ray Image with Data Science Approach Using Convolutional Neural Network. Sinkron: Jurnal Dan Penelitian Teknik Informatika, 2022, vol. 6, iss. 4, pp. 2193–2197. DOI: 10.33395/sinkron.v7i4.11711.

Nafisah, S. I., & Muhammad, G. Tuberculosis detection in chest radiograph using convolutional neural network architecture and explainable artificial intelligence. Neural Comput. Appl., 2022, vol. 36, pp. 113-13. DOI: 10.1007/s00521-022-07258-6.

Chowdhury, N. K., Kabir, M. A., Rahman, M., & Rezoana, N. ECOVNet: An Ensemble of Deep Convolutional Neural Networks Based on EfficientNet to Detect COVID-19 From Chest X-rays. PeerJ Comput. Sci., 2021, vol. 7, article no. e551. DOI: 10.48550/arXiv.2009.11850.

Oloko-Oba, M., & Viriri, S. Diagnosing Tuberculosis Using Deep Convolutional Neural Network. Image and Signal Processing, ed. El Moataz A. et al. Cham: Springer International Publishing, 2020, vol. 12119, pp. 151–161. DOI: 10.1007/978-3-030-51935-3 16.

Oloko-Oba, M., & Viriri, S. Ensemble of EfficientNets for the Diagnosis of Tuberculosis. Comput. Intell. Neurosci, ed. Lo Bosco G, 2021, vol. 2021, pp. 1–12. DOI: 10.1155/2021/9790894.

Devasia, J., Goswami, H., Lakshminarayanan, S., Rajaram, M., & Adithan, S. Deep learning classification of active tuberculosis lung zones wise manifestations using chest X-rays: a multi label approach. Sci. Rep. 2023, vol. 13, iss 1, article no. 887. DOI: 10.1038/s41598-023-28079-0.

Elizar, E., Zulkifley, M. A., & Muharar, R. Scaling and Cutout Data Augmentation for Cardiac Segmentation. Proceedings of International Conference on Data Science and Applications, ed. Saraswat M. et al. Singapore: Springer Nature Singapore, 2023, vol. 552, pp. 599–609. DOI: 10.1007/978-981-19-6634-7_42.

Li, Y., Han, M., Li, K., Han, Y., & Chen, P. X-Ray Image Enhancement Framework Based on Improved Local Adaptive Contrast Field for Complex Workpieces. IEEE Trans. Nucl. Sci., 2024. vol. 71, iss. 5, pp. 1225–1232. DOI: 10.1109/TNS.2024.3389106.

Stirenko, S., Kochura, Y., Alienin, O., Rokovyi, O., Gang, P., Zeng, W., & Gordienko, Y. Chest X-Ray Analysis of Tuberculosis by Deep Learning with Segmentation and Augmentation. IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO). Kiev, IEEE, 2018, pp. 422–428. DOI: 10.48550/arXiv.1803.01199.

Pasa, F., Golkov, V., Pfeiffer, F., Cremers, D., & Pfeiffer, D. Efficient deep network architectures for fast chest X-ray tuberculosis screening and visualization. Scientific reports, 2019, vol. 9, iss. 1, article no. 6268. DOI: 10.1038/s41598-019-42557-4.

Inbaraj, Xavier A., Villavicencio, C., Macrohon, J. J., Jeng, J. H., & Hsieh, J. G. A novel machine learning approach for tuberculosis segmentation and prediction using chest-x-ray (CXR) images. Applied Sciences, 2021, vol. 11, iss. 19, article no. 9057. DOI: 10.3390/app11199057.

Natarajan, S., Sampath, P., Arunachalam, R., Shanmuganathan, V., Dhiman, G., Chakrabati, T., & Margala, M. Early diagnosis and meta-agnostic model visualization of tuberculosis based on radiography images. Scientific Reports, 2023, vol. 13, iss. 1, article no. 22803. DOI: 10.1038/s41598-023-49195-x.

Jaeger, S., Candemir, S., Antani, S., Wáng, Y.-X ., Lu, P.-X., & Thoma, G. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imag. Med. Surgery, 2014, vol. 4, no. 6, article no. 475. DOI: 10.3978/j.issn.2223-4292.2014.11.20.

Tuberculosis Chest X-rays (Shenzhen). Available at: https://www.kaggle.com/datasets/raddar/tuberculosis-chest-xrays-shenzhen. (accessed 10.10.2024).

Tuberculosis Chest X-rays (Montgomery). Available at: https://www.kaggle.com/datasets/raddar/tuberculosis-chest-xrays-montgomery. (accessed 10.10.2024).

RSNA Pneumonia Detection Challenge. Available at: https://kaggle.com/competitions/rsna-pneumonia-detection-challenge. (accessed 10.10.2024).

Drug resistant tuberculosis X-rays. Available at: https://www.kaggle.com/datasets/raddar/drug-resistant-tuberculosis-xrays. (accessed 10.10.2024).

Maeda-Gutiérrez, V., & et al. Comparison of Convolutional Neural Network Architectures for Classification of Tomato Plant Diseases. Appl. Sci., 2020, vol. 10, iss. 4, article no. 1245. DOI: 10.3390/app10041245.

Sengupta, S., Basak, S., Saikia, P., Paul, S., Tsalavoutis, V., Ataiah, F., Ravi, F., & Peters, A. A review of deep learning with special emphasis on architectures, applications and recent trends. Knowl.-Based Syst., 2020, vol. 194, article no. 105596. DOI: 10.1016/j.knoys.2020.105596.

De Matos, J., Ataky, S., Britto, A., Oliveira, L., & Koerich, A. Machine Learning Methods for Histopathological Image Analysis: A Review. Electronics, 2021, vol. 10, iss. 5, article no. 562. DOI: 10.3390/electronics10050562.

Simonyan, K., & Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556. arXiv, 2015, no. arXiv:1409.1556. DOI: 10.48550/arXiv.1409.1556.

He, K., Zhang, X., Ren, S., & Sun, J. Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, IEEE, 2016, pp. 770–778. DOI: 10.1109/CVPR.2016.90.

Targ, S., Almeida, D., & Lyman, K. Resnet in Resnet: Generalizing Residual Architectures. arXiv:1603.08029. arXiv, 2016. DOI: 10.48550/arXiv.1603.08029.

Sarwinda, D., Paradisa, R. H., Bustamam, H., & Anggia, P. Deep Learning in Image Classification using Residual Network (ResNet) Variants for Detection of Colorectal Cancer. Procedia Comput. Sci., 2021, vol. 179, pp. 423–431. DOI: 10.1016/j.procs.2021.01.025.

Alom, Z., & et al. The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches. arXiv:1803.01164, 2018. DOI: 10.48550/arXiv.1803.01164.

Das, S., & et al. Estimation of Road Boundary for Intelligent Vehicles Based on DeepLabV3+ Architecture. IEEE Access, 2021, vol. 9, pp. 121060–121075. DOI: 10.1109/ACCESS.2021.3107353.

Tammina, S. Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images. Int. J. Sci. Res. Publ. IJSRP, 2019, vol. 9, iss. 10, article no. p9420. DOI: 10.29322/IJSRP.9.10.2019.p9420.

Salian, S. R., & Sawarkar, S. D. Melanoma Skin Lesion Classification Using Improved EfficientnetB3. Jordanian J. Comput. Inf. Technol., 2022, vol. 8, iss. 1, pp. 45-56. DOI: 10.5455/jjcit.71-1636005929.

Shoeibi, A., Marjane, K., Mahboobeh, J., Navid, G., Delaram, S., Parisa, M., Ali, K., Roohallah, A., Sadig, H., Assef, Z., Alizadeh, S. Z., Fahime, K., Saeid, N., Rajendra, A. U., & Juan, M. G. Automated detection and forecasting of COVID-19 using deep learning techniques: A review. Neurocomputing, 2024, vol. 577, article no. 127317. DOI: 10.1016/j.neucom.2024.127317.

Munadi, K., Saddami, K., Oktiana, M., Roslidar., Muchtar, K., Melinda., Muharar, R., Syukri, M., Abidin, T. F., & Arnia, F. A Deep Learning Method for Early Detection of Diabetic Foot Using Decision Fusion and Thermal Images. Appl. Sci., 2022, vol. 12, iss. 15, article no 7524. DOI: 10.3390/app12157524.

Tan, M., & Le, Q. V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. ArXiv. 2019, vol. abs/1905.11946. DOI: 10.48550/arXiv.1905.11946.

Magdalena, R., Saidah, S., Fuadah, Y. N., Ubaidah, I. D. S., Herman, N., & Ibrahim, N. Convolutional Neural Network for Anemia Detection Based on Conjunctiva Palpebral Images. Jurnal Teknik Informatika, 2022, vol. 3, iss. 2, pp. 349-354. DOI: 10.20884/1.jutif.2022.3.2.197.

Goodfellow, I., Bengio, Y., & Courville, A. Deep learning. Alanna Maldonado, 2023. 804 p.




DOI: https://doi.org/10.32620/reks.2025.1.12

Refbacks

  • There are currently no refbacks.