Development of a multidimensional data model for efficient content-based image retrieval in big data storage
Abstract
Keywords
Full Text:
PDFReferences
Joshi, S. 35+ Google Search Statistics to Adapt to The Latest Trends. Available at: https://learn.g2.com/google-search-statistics (accessed 30.11.2024).
Kumar, N. How Many Google Searches Per Day (2024 Statistics). Available at: https://www.demandsage.com/google-search-statistics/ (accessed 30.11.2024).
Li, X., Yang J., & Ma J. Recent developments of content-based image retrieval (CBIR). Neurocomputing, 2021, vol. 452, pp. 675-689. DOI: 10.1016/j.neucom.2020.07.139.
Padma, Y. Advancements in Non-Linear Content-Based Image Retrieval (CBIR) Systems for Image Analysis. Communications on Applied Nonlinear Analysis, 2024, vol. 31, no. 2s, pp. 253-265. DOI: 10.52783/cana.v31.639.
Hirwane, R. Fundamental of Content Based Image Retrieval. International Journal of Computer Science and Information Technologies, 2012, no. 3, pp. 3260-3263.
Long, F., Zhang, H., & Feng, D. D. Fundamentals of Content-Based Image Retrieval. Signals and Communication Technology, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 1-26. DOI: 10.1007/978-3-662-05300-3_1.
Zheng, L., Yang Y., Tian, Q. SIFT Meets CNN: A Decade Survey of Instance Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, vol. 40, no. 5, pp. 1224-1244. DOI: 10.1109/tpami.2017.2709749.
Li, Y., Shapiro, L. O., & Bilmes, J. A. A generative/discriminative learning algorithm for image classification. Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, IEEE, Beijing, China, 2005, vol. 2, pp. 1605-1612, DOI: 10.1109/iccv.2005.7.
Sivic, J., & Zisserman, A. Video Google: Efficient Visual Search of Videos. Lecture Notes in Computer Science, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, vol. 4170, pp. 127-144. DOI: 10.1007/11957959_7.
Babenko, A. Slesarev, A. Chigorin, A., & Lempitsky, V. Neural Codes for Image Retrieval. Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, Springer, Cham., 2014, vol, 8689, pp. 584-599. DOI: 10.1007/978-3-319-10590-1_38.
Razavian, A. S., Azizpour, H., Sullivan, J., & Carlsson, S. CNN Features off-the-shelf: an Astounding Baseline for Recognition. 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Columbus, OH, USA, 2014, pp. 512-519. DOI: 10.1109/CVPRW.2014.131.
Gordo, A., Almazan, J., Revaud, J., & Larlus, D. End-to-end Learning of Deep Visual Representations for Image Retrieval. Int J Comput Vis, 2017, vol. 124, pp. 237-254. DOI: 10.1007/s11263-017-1016-8.
Datar, M., Immorlica, N., Indyk, P., & Mirrokni, V. S. Locality-sensitive hashing scheme based on p-stable distributions. Proceedings of the Twentieth Annual Symposium on Computational Geometry, ACM, New York, NY, USA, 2004, pp. 253-262. DOI: 10.1145/997817.997857.
Lin, G., Shen, C., Shi, Q., van den Hengel A., & Suter, D. Fast Supervised Hashing with Decision Trees for High-Dimensional Data. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, IEEE, 2014, pp. 1971-1978. DOI: 10.1109/cvpr.2014.253.
Zhang, D., Islam, M. M., Lu, G., & Hou, J. Semantic Image Retrieval Using Region Based Inverted File. 2009 Digital Image Computing: Techniques and Applications, Melbourne, VIC, Australia, IEEE, 2009, pp. 242-249. DOI: 10.1109/dicta.2009.48.
Berman, A. P., & Shapiro, L. G. A flexible image database system for content-based retrieval. Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170), IEEE Comput. Soc., Brisbane, QLD, Australia, 1998, pp. 894-898. DOI: 10.1109/icpr.1998.711295.
Jégou, H., Douze, M., & Schmid, C. Product Quantization for Nearest Neighbor Search, IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, 2011, vol. 33, no. 1, pp. 117-128. DOI: 10.1109/tpami.2010.57.
Jegou, H., Tavenard, R., Douze, M., & Amsaleg, L. Searching in one billion vectors: Re-rank with source coding. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, IEEE, 2011, pp. 861-864. DOI: 10.1109/ICASSP.2011.5946540.
Babenko, A., & Lempitsky, V. The inverted multi-index. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, IEEE, 2012, pp. 3069-3076. DOI: 10.1109/CVPR.2012.6248038.
Ge, T., He, K., Ke, Q., & Sun, J. Optimized Product Quantization for Approximate Nearest Neighbor Search. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, IEEE, 2013, pp. 2946-2953, DOI: 10.1109/cvpr.2013.379.
Mensah, M. E., Li, X., Lei, H., Obed, A., & Bombie, N. C. Improving Performance of Colour-Histogram-Based CBIR Using Bin Matching for Similarity Measure. Artificial Intelligence and Security, Springer International Publishing, Cham, 2020, vol. 12239, pp. 586-596. DOI: 10.1007/978-3-030-57884-8_52.
Guldogan, E., & Gabbouj, M. Feature selection for content-based image retrieval. Signal, Image and Video Processing, 2008, vol. 2, iss. 3, pp. 241-250. DOI: 10.1007/s11760-007-0049-9.
Guldogan, E., & Gabbouj, M. System profiles in content-based image indexing and retrieval. Signal, Image and Video Processing, 2009, vol. 4, iss. 4, 463-480. DOI: 10.1007/s11760-009-0137-0.
Qazanfari, H., AlyanNezhadi, M. M., & Khoshdaregi, Z. N. Advancements in Content-Based Image Retrieval: A Comprehensive Survey of Relevance Feedback Techniques, arXiv.Org, 2023. Available at: https://arxiv.org/abs/2312.10089 (accessed: 01.12.2024).
Muja, M., & Lowe, D. G. Fast approximate nearest neighbors with automatic algorithm configuration. Proceedings of the Fourth International Conference on Computer Vision Theory and Applications (VISIGRAPP 2009), 2009, vol. 1, pp. 331-340. DOI: 10.5220/0001787803310340.
Qi, J. Faiss. GitHub. Available at: https://github.com/facebookresearch/faiss/wiki (accessed 22.12.2024).
Lux, M., & Chatzichristofis, S. A. Lire: lucene image retrieval. Proceedings of the 16th ACM International Conference on Multimedia, ACM, New York, NY, USA, 2008, pp. 1085-1088. DOI: 10.1145/1459359.1459577.
Jensen, C. S., Pedersen, T. B., & Thomsen, C. Multidimensional Databases and Data Warehousing, Springer Cham, 2010. 111 p. DOI: 10.2200/s00299ed1v01y201009dtm009.
EsotericSoftware. GitHub - EsotericSoftware/kryo: Java binary serialization and cloning: fast, efficient, automatic. Available at: https://github.com/EsotericSoftware/kryo (accessed 23.12.2024).
COCO, Common Objects in Context. Available at: https://cocodataset.org/ (accessed 5.12.2024)
Danylenko, S. MDC-2025-ukr-art-1, Google Drive. Available at: https://drive.google.com/drive/folders/1iTBbD1dKPxGnAAKOhXFRBDdO31jcRQf9?usp =sharing (accessed 22.12.2024).
DOI: https://doi.org/10.32620/reks.2025.1.10
Refbacks
- There are currently no refbacks.
