Comparative analysis of image hashing algorithms for visual object tracking
Abstract
Keywords
Full Text:
PDFReferences
Bao, C., Wu, Y., Ling, H., & Ji, H. Real time robust L1 tracker using accelerated proximal gradient approach. 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 1830-1837. DOI: 10.1109/CVPR.2012.6247881.
Bai, S., Liu R.,, Su, Z., Zhang, C., & Jin, W. Incremental robust local dictionary learning for visual tracking. Proc (IEEE Int Conf Multimed Expo), 2014, vol. 2014, pp. 1-6. DOI: 10.1109/ICME.2014.6890262.
Jia, C., & et al. A Tracking-Learning-Detection (TLD) method with local binary pattern improved. 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2015, pp. 1625-1630. DOI: 10.1109/ROBIO.2015.7419004.
Babenko, B., Yang, M.-H., & Belongie, S. Visual tracking with online Multiple Instance Learning. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 983-990. DOI: 10.1109/CVPR.2009.5206737.
Cho, J., Jin, S., Pham, X., Jeon, J., Byun, J., & Kang, H. A Real-Time Object Tracking System Using a Particle Filter. IEEE International Conference on Intelligent Robots and Systems, 2006, pp. 2822-2827. DOI: 10.1109/IROS.2006.282066.
Li, Y., & Zhu, J. A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration. Computer Vision - ECCV 2014 Workshops. ECCV 2014. Lecture Notes in Computer Science, Springer, Cham, 2015, vol. 8926, pp. 254-265. DOI: 10.1007/978-3-319-16181-5_18.
Danelljan, M., Häger, G., Khan, F., & Felsberg, M. Learning Spatially Regularized Correlation Filters for Visual Tracking. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015, pp. 4310-4318. DOI: 10.1109/ICCV.2015.490.
Henriques, J., Caseiro, R., Martins, P., & Batista, J. High-Speed Tracking with Kernelized Correlation Filters. IEEE Trans Pattern Anal Mach Intell, 2014, vol. 37. DOI: 10.1109/TPAMI.2014.2345390.
Bolme, D., Beveridge, J., Draper, B., & Lui, Y. Visual object tracking using adaptive correlation filters. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, pp. 2544-2550. DOI: 10.1109/CVPR.2010.5539960.
Zhang, Z., & Peng, H. Deeper and Wider Siamese Networks for Real-Time Visual Tracking. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 4586-4595. DOI: 10.1109/CVPR.2019.00472.
Xu, Y., Wang, Z., Li, Z., Yuan, Y., & Yu, G. SiamFC++: Towards Robust and Accurate Visual Tracking with Target Estimation Guidelines. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, vol. 34, pp. 12549-12556. DOI: 10.1609/aaai.v34i07.6944.
Bertinetto, L., Valmadre, J., Henriques, J., Vedaldi, A., & Torr, P. Fully-Convolutional Siamese Networks for Object Tracking. Computer Vision – ECCV 2016 Workshops. ECCV 2016. Lecture Notes in Computer Science, Springer, Cham, 2016, vol. 9914, pp. 850-865. DOI: 10.1007/978-3-319-48881-3_56.
Li, B., Yan, J., Wu, W., Zheng, Z., & Hu, X. High Performance Visual Tracking with Siamese Region Proposal Network. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 8971-8980. DOI: 10.1109/CVPR.2018.00935.
Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., & Yan, J. SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019. DOI: 10.1109/CVPR.2019.00441.
Yan, B., Peng, H., Wu, K., Wang, D., Fu, J., & Lu, H. LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search. arXiv:2104.14545, 2021. DOI: 10.48550/arXiv.2104.14545.
Zhao, M., Okada, K., & Inaba, M. TrTr: Visual Tracking with Transformer. arXiv:2105.03817, 2021, DOI: 10.48550/arXiv.2105.03817.
Yan, B., Peng, H., Fu, J., Wang, D., & Lu, H. Learning Spatio-Temporal Transformer for Visual Tracking. arXiv:2103.17154, 2021. DOI: 10.48550/arXiv.2103.17154.
Evgeniou, T., & Pontil, M. Support Vector Machines: Theory and Applications. Machine Learning and Its Applications. ACAI 1999. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2001, vol. 2049, pp. 249-257. DOI: 10.1007/3-540-44673-7_12.
Yi, C. Target Tracking Feature Selection Algorithm Based on Adaboost. TELKOMNIKA Indonesian Journal of Electrical Engineering, 2014, vol. 12. Available at: https://ijeecs.iaescore.com/index.php/IJEECS/article/view/3056. (accessed Aug. 8 2024).
Hare, S., Saffari, A., & Torr, P. H. S. Struck: Structured output tracking with kernels. 2011 International Conference on Computer Vision, Barcelona, Spain, 2011, pp. 263-270. DOI: 10.1109/ICCV.2011.6126251.
Kirillov, A., & et al. Segment Anything. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023, pp. 3992-4003. DOI: 10.1109/ICCV51070.2023.00371.
Ravi, N., & et al. SAM 2: Segment Anything in Images and Videos. arXiv.2408.00714, 2024. DOI: 10.48550/arXiv.2408.00714.
Fei, M., Li, J., & Liu, H. Visual tracking based on improved foreground detection and perceptual hashing. Neurocomputing, 2015, vol. 152, pp. 413-428. DOI: 10.1016/j.neucom.2014.09.060.
Fei, M., Ju, Z., Zhen, X., & Li, J. Real-time visual tracking based on improved perceptual hashing. Multimed Tools Appl, 2017, vol. 76, pp. 4617-4634. DOI: 10.1007/s11042-016-3723-5.
Chen, N., Xiao, H.-D., & Wan, W. Audio hash function based on non-negative matrix factorisation of mel-frequency cepstral coefficients. IET Information Security, 2011, vol. 5, iss. 1, pp. 19-25. DOI: 10.1049/iet-ifs.2010.0097.
Chen, N., & Xiao, H. Perceptual audio hashing algorithm based on Zernike moment and maximum-likelihood watermark detection. Digit Signal Process, 2013, vol. 23, iss. 4, pp. 1216-1227. DOI: 10.1016/j.dsp.2013.01.012.
Yang, B., Gu, F., & Niu, X. Block Mean Value Based Image Perceptual Hashing. 2006 International Conference on Intelligent Information Hiding and Multimedia, Pasadena, CA, USA, 2006, pp. 167-172. DOI: 10.1109/IIH-MSP.2006.265125.
Deng, Z., Xiao, H., Lang, Y., Feng, H., & Zhang, J. Multi-scale hash encoding based neural geometry representation. Comput Vis Media (Beijing), 2024, vol. 10, iss. 3, pp. 453-470. DOI: 10.1007/s41095-023-0340-x.
Xuan, Z., Wu, D., Zhang, W., Su, Q., Li, B., & Wang, W. Central similarity consistency hashing for asymmetric image retrieval. Comput Vis Media (Beijing), 2024, vol. 10, no. 4, pp. 725-740. DOI: 10.1007/s41095-024-0428-y.
Watson, A. Image Compression Using the Discrete Cosine Transform. Mathematica Journal, 1994, vol. 4, iss. 1, pp. 81-88. Available at: http://sites.apam.columbia.edu/courses/ap1601y/Watson_MathJour_94.pdf. (accessed Aug. 8 2024).
Fei, M., Li, J., Shao, L., Ju, Z., & Ouyang, G. Robust Visual Tracking Based on Improved Perceptual Hashing for Robot Vision. Intelligent Robotics and Applications. Lecture Notes in Computer Science, Springer, Cham, 2015, vol. 9246, pp. 331-340. DOI: 10.1007/978-3-319-22873-0_29.
Babenko, B., Yang, M.-H., & Belongie, S. Robust Object Tracking with Online Multiple Instance Learning. EEE Transactions on Pattern Analysis and Machine Intelligence, 2011, vol. 33, no. 8, pp. 1619-1632. DOI: 10.1109/TPAMI.2010.226.
DOI: https://doi.org/10.32620/reks.2025.1.09
Refbacks
- There are currently no refbacks.
