Using a deep learning neural network to predict flight path
Abstract
Keywords
Full Text:
PDFReferences
Yue, J., Manocha, D., & Wang, H. Human trajectory prediction via neural social physics. Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, 2022, vol. 13694. Springer, Cham. DOI: 10.1007/978-3-031-19830-4_22.
Liu, Y., Yan, Q., & Alahi, A. Social NCE: Contrastive learning of socially-aware motion representations. IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 15118-15129. DOI: 10.48550/arXiv.2012.11717.
Qin, W., Tang, J., Lu, C., & Lao, S. Trajectory prediction based on long short-term memory network and Kalman filter using hurricanes as an example. Computational Geosciences, 2021, vol. 25, pp. 1005-1023. DOI: 10.1007/s10596-021-10037-2.
Park, D., Ryu, H., Yang, Y., Cho, J., Kim, J., & Yoon, K. Leveraging future relationship reasoning for vehicle trajectory prediction., article no. 6558, DOI: 10.48550/arXiv.2305.14715.
Blain, J. M. The complete guide to Blender graphics: computer modeling & animation. AK Peters/CRC Press, 2019, ISBN: 9781032510552.
Hosen, M. S., Ahmmed, S., & Dekkati, S. Mastering 3D modeling in Blender: From novice to pro. ABC Research Alert, 2019, vol. 7, no. 3, pp. 169-180. DOI: 10.18034/ra.v7i3.654.
Zheng, Q., Yang, M., Tian, X., Jiang, N., & Wang, D. A full stage data augmentation method in deep convolutional neural network for natural image classification. Discrete Dynamics in Nature and Society, article no. 4706576, 2020. DOI: 10.1155/2020/4706576.
Strecha, C., Von Hansen, W., Van Gool, L., Fua, P., & Thoennessen, U. On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008, pp. 1-8. DOI: 10.1109/CVPR.2008.4587706.
Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., Lo, W-Y., Dollar, P., & Girshick, R. Segment anything. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 4015-4026. DOI: 10.48550/arXiv.2304.02643.
Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E., & Sitti, M. Deep EndoVO: A recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots. Neurocomputing, 2018, vol. 275, pp. 1861-1870. DOI: 10.48550/arXiv.1708.06822.
Li, J., Cheng, J. H., Shi, J. Y., & Huang, F. Brief introduction of back propagation (BP) neural network algorithm and its improvement. Advances in Computer Science and Information Engineering, 2012, vol. 2. Springer Berlin Heidelberg, pp. 553-558. DOI: 10.1007/978-3-642-30223-7_87.
Kingma, D. P., & Ba, J. Adam: A method for stochastic optimization. 3rd International Conference for Learning Representations, 2015. DOI: 10.48550/arXiv.1412.6980.
Bharilya, V., & Kumar, N. Machine learning for autonomous vehicle’s trajectory prediction: A comprehensive survey, challenges, and future research directions. Vehicular Communications, 2024, vol. 46, article no. 100733. DOI: 10.48550/arXiv.2307.07527.
Payeur, P., Le-Huy, H., & Gosselin, C. Trajectory prediction for moving objects using artificial neural networks. IEEE Transactions on Industrial Electronics, 1995, vol. 42, no. 2, pp. 147-158. DOI: 10.1109/41.370380.
Giuliari, F., Hasan, I., Cristani, M., & Galasso, F. Transformer networks for trajectory forecasting. 25th International Conference on Pattern Recognition (ICPR), 2021, pp. 10335-10342. DOI: 10.48550/arXiv.2003.08111.
An, Y., Liu, A., Liu, H., & Geng, L. Multidimensional trajectory prediction of UAV swarms based on dynamic graph neural network. IEEE access, 2024, vol. 12, pp. 57033-57042. DOI: 10.1109/ACCESS.2024.3391374.
DOI: https://doi.org/10.32620/reks.2025.1.05
Refbacks
- There are currently no refbacks.
