Towards the improvement of project team performance based on large language models
Abstract
Keywords
Full Text:
PDFReferences
The Scrum Guide. The Definitive Guide to Scrum: The Rules of the Game. Available at: https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf#zoom=100 (аccessed 10.05.2024).
Cleland, D. L., & Gareis, R. Learn and apply successful international project management techniques. McGraw Hill Professional, 2010. 575 p.
Strielkina, A., Tetskyi, A., & Krasilshchykova, V. Risk and uncertainty assessment in software project management: integrating decision trees and monte carlo modeling. Radioelectronic and Computer Systems, 2023, no. 3(107). pp. 217-225. DOI: 10.32620/reks.2023.3.17.
Jira Software. [The IT industry]. Available at: https://www.atlassian.com/software/jira. (аccessed 10.05.2024).
Covey, S. R. The 7 Habits of Highly Effective People: Powerful Lessons in Personal Change. Simon and Schuster, 2004. 372 p.
Kalyan, K. S. A survey of GPT-3 family large language models including ChatGPT and GPT-4. Natural Language Processing Journal, 2024, vol. 6, pp. 100048. DOI: 10.1016/j.nlp.2023.100048.
Agathokleous, E., Rillig, M., Peñuelas, J., & Yu, Z. One hundred important questions facing plant science derived using a large language model. Trends in Plant Science, 2023, vol. 29, no. 2, pp. 210-218. DOI: 10.1016/j.tplants.2023.06.008.
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., & et al. Language Models are Few-Shot Learners. arxiv, Computation and Language, 2020, pp. 1-75. DOI: 10.48550/arXiv.2005.14165.
Cherednichenko, O., Ivashchenko, O., Lincényi, M., & Kováč, M. Information technology for intellectual analysis of item descriptions in e-commerce. Entrepreneurship and Sustainability Issues, 2023, vol. 11, no. 1, pp. 178-190. DOI: 10.9770/jesi.2023.11.1(10).
Peggy, G., Strode, D., Sharp, H., & Barroca, L. An onboarding model for integrating newcomers into agile project teams. Information and Software Technology. 2022, vol. 143, article no. 106792. DOI: 10.1016/j.infsof.2021.106792.
Femmer, H., Fernández, D., Wagner, S., & Eder, S. Rapid quality assurance with Requirements Smells. Journal of Systems and Software, 2017, vol. 123, pp. 190-213. DOI: 10.1016/j.jss.2016.02.047.
Dalpiaz, F., Gieske, P., & Sturm, A. On deriving conceptual models from user requirements: An empirical study. Information and Software Technology, 2021, vol. 131, article no. 106484. DOI: 10.1016/j.infsof.2020.106484.
Li, Z., Wang, X., Jing, W., Wu, J., Zhang, Z., Liu, Z., Sun, M., Hui, Z., & Liu, S. A Unified Understanding of Deep NLP Models for Text Classification, Available at: https://arxiv.org/abs/2206.09355 (accessed 08.05.2024).
Ishizuka, R., Washizaki, H., Tsuda, N., Fukazawa, Y., Ouji, S., Saito, S., & Iimura, Y. Categorization and Visualization of Issue Tickets to Support Understanding of Implemented Features in Software Development Projects, Applied Sciences, 2022, no. 12, iss. 7, article no. 3222. DOI: 10.3390/app12073222.
Briciu, A., Czibula, G., & Lupea. M. A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers. Procedia Computer Science, 2023, vol. 225, pp. 1601-1610. DOI: 10.1016/j.procs.2023.10.149.
Abdu, A., Zhai, Z., Algabri, R., Abdo, H., Hamad, K., & Al-antari, M. Deep learning-based software defect prediction via semantic key features of source code systematic survey. Mathematics, 2022, vol. 10, no. 17, article no. 3120. DOI: 10.3390/math10173120.
Chawla, P., Hazarika, S., & Shen, H.-W. Token-wise sentiment decomposition for convnet: Visualizing a sentiment classifier. Visual Informatics, 2020, vol. 4, iss. 2, pp. 132-141. DOI: 10.1016/j.visinf.2020.04.006.
Frattini, J. Identifying Relevant Factors of Requirements Quality: An Industrial Case Study. Requirements Engineering: Foundation for Software Quality, 2024. vol. 14588, pp. 20-36. DOI: 10.1007/978-3-031-57327-9_2.
Moharil, A., & Sharma, A. TABASCO: A transformer based contextualization toolkit. Science of Computer Programming, 2023, vol. 230, article no. 102994. DOI: 10.1016/j.scico.2023.102994.
Sonbol, R., Rebdawi, G., & Ghneim, N. Learning software requirements syntax: An unsupervised approach to recognize templates. Knowledge-Based Systems, 2022, vol. 248, article no. 108933. DOI: 10.1016/j.knosys.2022.108933.
Berhanu, F., & Alemneh, E. Classification and Prioritization of Requirements Smells Using Machine Learning Techniques. Conference Proceedings: 2023 International Conference on Information and Communication Technology for Development for Africa (ICT4DA). IEEE, 2023, pp. 49-54. DOI: 10.1109/ICT4DA59526.2023.10302263.
The Public Jira Dataset. Available at: https://zenodo.org/records/5901804. (accessed 15.05.2024).
Devlin, J., Chang, M., Lee, K., & Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019, vol. 1, pp. 4171-4186. DOI: 10.18653/v1/N19-1423.
Grinchenko, M., & Rohovyi, M. A model for identifying project sprint tasks based on their description. Innovative Technologies and Scientific Solutions for Industries, 2023, no. 4 (26), pp. 33-44. DOI: 10.30837/ITSSI.2023.26.033.
Yuanzhi Li, Bubeck, S., Eldan, R., Del Giorno, A., Gunasekar, S., & Lee, Y. Textbooks Are All You Need II: phi-1.5 technical report. Microsoft Research, 2023, pp. 1-16. DOI: 10.48550/arXiv.2309.05463.
Nielsen, F. Hierarchical Clustering. Introduction to HPC with MPI for Data Science, Springer, Chapter, 2016, ISSN 1863-7310, pp. 221-239. DOI: 10.1007/978-3-319-21903-5_8.
Jolliffe, I. T., & Cadima, J. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016. vol. 374, iss. 2065, pp. 1-16. DOI: 10.1098/rsta.2015.0202.
Linderman, G., & Steinerberger, S. Clustering with t-SNE, Provably, SIAM Journal on Mathematics of Data Science, 2019, vol. 1, iss. 2, pp. 313-332. DOI: 10.1137/18M1216134.
Rohovyi, M., & Grinchenko, M. Project team management model under risk conditions. Bulletin of the National Technical University "KhPI". Series: Strategic Management, Portfolio, Program and Project Management, 2023, no. 1(7), pp. 3-11. DOI: 10.20998/2413-3000.2023.7.1.
DOI: https://doi.org/10.32620/reks.2024.4.19
Refbacks
- There are currently no refbacks.