Concept of a geoinformation platform for landmines and other explosive objects detection and mapping with UAV
Abstract
Keywords
Full Text:
PDFReferences
Horbulin, V. P. Svitova hlobalʹna problema rozminuvannya: ukrayinsʹkyy vektor [World global demining problem: Ukrainian vector]. Visnyk of the National Academy of Sciences of Ukraine, 2022, no. 2, pp. 3-13. Available at: http://dspace.nbuv.gov.ua/handle/123456789/185010. (accessed Aug. 12, 2024). (In Ukrainian).
Alwatiri, S., Omar, Z., & Algabri, Y. A. Land mines detection, mapping and clearance using Quadcopter in Yemen: a perspective study. Journal of Science and Technology, 2023, vol. 27, no. 2, pp. 32-36. DOI: 10.20428/jst.v27i2.2053.
Schindler, M., & Connell, A. Mine action and food security: the complexities of clearing Ukraine's agricultural lands. The Journal of Conventional Weapons Destruction, 2023, vol. 27, no. 2, pp. 13-24. Available at: https://commons.lib.jmu.edu/cisr-journal/vol27/iss2/3. (accessed Aug. 12, 2024).
Skydan, O., Dankevych, V., Garrett, R. D., & Nimko, O. The state of the agricultural sector in Ukraine during wartime: the case of farmers. Scientific Horizons, 2023, vol. 26, no. 6, pp. 134-145. DOI: 10.48077/scihor6.2023.134.
Bello, R., Literature review on landmines and detection methods. Frontiers in Science, 2013, vol. 3, no. 1, pp. 27-42. Available at: http://article.sapub.org/10.5923.j.fs.20130301.05.html. (accessed Aug. 12, 2024).
Kovács Z., & Ember, I. Landmine detection with drones. Land Forces Academy Review, 2022, vol. 27, no. 1, pp. 84-92. DOI: 10.2478/raft-2022-0012.
Florez-Lozano, J., Caraffini, F., Parra, C., & Gongora, M. Cooperative and distributed decision-making in a multi-agent perception system for improvised land mines detection. Information Fusion, 2020, vol. 64, pp. 32-49. DOI: 10.1016/j.inffus.2020.06.009.
Popov, M. O., Stankevich, S. A., Mosov, S. P., Titarenko, O. V., Topolnytskyi, M. V., & Dugin, S. S. Landmine detection with UAV-based optical data fusion. Proceedings of the 19th International Conference on Smart Technologies (EuroCon 2021). Lviv: IEEE, 2021, pp. 175-178. DOI: 10.1109/EUROCON52738.2021.9535553.
Colorado, J., Mondragon, I., Rodriguez, J., & Castiblanco, C. Geo-mapping and visual stitching to support landmine detection using a low-cost UAV. International Journal of Advanced Robotic Systems, 2015, vol. 12, no. 9. DOI: 10.5772/61236.
Molochko, S. M., Bashynskyj, V. G., Kalamur¬za, O. G., & Zhurakhov, V. A. Analiz suchasnoho stanu, kharakterystyk ta perspektyv rozvytku datchykiv vyyavlennya vybukhonebezpechnykh predmetiv, vstanovlenykh na BpAK [Analysis of the current state, characteristics and prospects of development of explosive ordnance detection sensors mounted on unmanned aerial systems]. Zbirnyk naukovykh pratsʹ Derzhavnoho naukovo-doslidnoho instytutu vyprobuvanʹ i sertyfikatsiyi ozbroyennya ta viysʹkovoyi tekhniky – Scientific works of State Scientific Research Institute of Armament and Military Equipment Testing and Certification, 2021, vol. 8, iss. 2, pp. 80-90. DOI: 10.37701/dndivsovt.8.2021.09. (In Ukrainian).
Kale, M. G., Ratnaparkhe, V. R., & Bhalchandra, A. S. Sensors for landmine detection and techniques: a review. International Journal of Engineering Research & Technology, 2013, vol. 2, no. 1. Available at: http://article.sapub.org/10.5923.j.fs.20130301.05.html. (accessed Aug. 12, 2024).
Nouman, H., Zeeshan, H., Shahzad, A., Shamaraz, F., & Chen, Yi. H. Sensor for landmine detection using unmanned vehicle metal detector and mobile computing technology. Open Access Journal of Environmental and Soil Sciences, 2020, vol. 4, no. 4, pp. 533-540. Available at: https://lupinepublishers.com/environmental-soil-science-journal/pdf/OAJESS.MS.ID.000194.pdf. (accessed Aug. 12, 2024).
Marsh, L.A., van Verre, W., Davidson, J. L., Gao, X., Podd, F. J. W., Daniels, D. J., & Peyton, A. J. Combining electromagnetic spectroscopy and ground-penetrating radar for the detection of anti-personnel landmines. Sensors, 2019, vol. 19, no. 15, article no. 3390. DOI: 10.3390/s19153390.
Popov, M., Stankevich, S., Mosov, S., Saprykin, I. Drone-based landmine detection by image and signal fusion. Proceedings of the TIEMS Hybrid Annual Conference. Port Alfred: TIEMS, 2023, 24 p. Available at: https://www.tiems.info/images/pdf/TIEMS_2023_Hybrid_Annual_Conference_Preliminary_Program_ver_5.pdf. (accessed Aug. 12, 2024).
Vivoli, E., Bertini, M., & Capineri, L. Deep learning-based real-time detection of surface landmines using optical imaging. Remote Sensing, 2024, vol. 16, no. 4, article no. 677. DOI: 10.3390/rs16040677.
Barnawi, A., Kumar, K., Kumar, N., Alzahrani, B., & Almansour, A. A deep learning approach for landmines detection based on airborne magnetometry imaging and edge computing. Computer Modeling in Engineering & Sciences, 2024, vol. 139, no. 2, pp. 2117-2137. DOI: 10.32604/cmes.2023.044184.
Hutsul, T., Khobzei, M., Tkach, V., Krulikovskyi, O., Moisiuk, O., Ivashko, V., & Samila, A. Review of approaches to the use of unmanned aerial vehicles, remote sensing and geographic information systems in humanitarian demining: Ukrainian case. Heliyon, 2024, vol. 10, iss. 7, article no. e29142. DOI: 10.1016/j.heliyon.2024.e29142.
Alegria, A. C., Zimanyi, E., Cornelis, J., & Sahli, H. Hazard mapping of landmines and ERW using geo-spatial techniques. Journal of Remote Sensing & GIS, 2017, vol. 6, iss. 2, article no. 1000197. Available at: https://www.walshmedicalmedia.com/open-access/hazard-mapping-of-landmines-and-erw-using-geospatial-techniques-2469-4134-1000197.pdf. (accessed Aug. 12, 2024).
Rubio, M. D., Zeng, S., Wang, Q., Alvarado, D., Rivera, F. M., Heidari, H., Fang, F. RELand: risk estimation of landmines via interpretable invariant risk minimization. ACM Journal on Computing and Sustainable Societies, 2024, vol. 2, no. 2, article no. 23. DOI: 10.1145/3648437.
Malof, J. M., Morton, K. D., Collins, L. M., & Torrione, P. A. A probabilistic model for designing multimodality landmine detection systems to improve rates of advance. IEEE Transactions on Geoscience and Remote Sensing, 2016, vol. 54, iss. 9, pp. 5258-5270. DOI: 10.1109/TGRS.2016.2559505.
Popov, M. O., Stankevich, S. A., Mosov, S. P., Titarenko, O. V., Dugin, S. S., Golubov, S. I., & Andreiev, A. A. Method for minefields mapping by imagery from unmanned aerial vehicle. Advances in Military Technology, 2022, vol. 17, no. 2, pp. 211-229. DOI: 10.3849/aimt.01722.
Camacho-Sanchez, C., Yie-Pinedo, R., & Galindo, G. Humanitarian demining for the clearance of landmine-affected areas. Socio-Economic Planning Sciences, 2023, vol. 88, article no. 101611. DOI: 10.1016/j.seps.2023.101611.
Rafique, W., Zheng, D., Barras, J., Joglekar, S., & Kosmas, P. Predictive analysis of landmine risk. IEEE Access, 2019, vol. 7, pp. 107259-107269. DOI: 10.1109/ACCESS.2019.2929677.
QGIS. A Free and Open Source Geographic Information System. Official QGIS web site. Available at: https://qgis.org/en/site/ (accessed Aug. 14, 2023).
Flight Planner. QGIS Python Plugins Repository. Available at: https://plugins.qgis.org/plugins/flight_planner/ (accessed Aug. 12, 2024).
Popov, M. O., Stankevich, S. A., Mosov, S. P., Dugin, S. S., & Saprykin, I. Y. Drone-based landmine detection mission planning. Proceedings of 7th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC 2023). Kyiv: IEEE, 2023, pp. 151-154. DOI: 10.1109/MSNMC61017.2023.10329129.
Train AI models in seconds with Ultralytics YOLO. Official Ultralytics Website, Available at: https://www.ultralytics.com/yolo (accessed Aug. 12, 2024).
Saprykin, I. Y. Optical deep learning landmine detection based on limited dataset of aerial imagery. Naukoyemni tekhnolohiyi – Science-based technologies, 2024, vol. 62, iss. 2. DOI: 10.18372/2310-5461.62.18708.
QGIS: Deepness: Deep Neural Remote Sensing. Official Deepness Site. Available at: https://qgis-plugin-deepness.readthedocs.io/en/latest/ (accessed Aug. 12, 2024).
DOI: https://doi.org/10.32620/reks.2024.4.17
Refbacks
- There are currently no refbacks.