Model of an automated control system for the positioning of radio signal transmission/reception devices
Abstract
Keywords
Full Text:
PDFReferences
Fesenko, H., & Kharchenko, V. Determination Of An Optimal Route For Flight Over Of Specified Points Of A Potentially Dangerous Object Territory By Uav Fleet. Radioelectronic and Computer Systems, 2019, no. 3, pp. 63–72. DOI: 10.32620/reks.2019.3.07.
Wang, X., Ye, X., Zhou, Y. & Li, C. Path-Following Control of Unmanned Vehicles Based on Optimal Preview Time Model Predictive Control. World Electric Vehicle Journal, 2024, vol. 15, no. 6, article no. 221. DOI: 10.3390/wevj15060221.
Ostapets, Y. D. Experimental Evaluation of the Effectiveness of Using Visual Cues for Controlling Unmanned Vehicles. Science and Transport Progress, 2024, vol. 2, iss. 106, pp. 34–42. DOI: 10.15802/stp2024/306148.
Gong, S. Path Planning for Unmanned Delivery Vehicles Based on Machine Vision. Academic Journal of Science and Technology, 2023, vol. 7, no. 3, pp. 158–160. DOI: 10.54097/ajst.v7i3.13269.
Naumenko, I., Myronenko, M., & Savchenko, T. Information-extreme machine training of on-board recognition system with optimization of RGB-component digital images. Radioelectronic and computer systems, 2021. no. 4, pp. 59–70. DOI: 10.32620/reks.2021.4.05.
Zeng, M., Sun, W., Wang, Z., Chen, H., & Hashim, M. Evaluation and Application Algorithm of Artificial Intelligence Unmanned Vehicle Control Device Based on IoT Intelligent Transportation. Computing and Informatics, 2024, vol. 43, no. 4, pp. 944–973. DOI: 10.31577/cai_2024_4_944.
Kushwaha, J., Gupta, A., Vishwakarma, D., Indrajeet, & Srivastav, D. RAKSHAK-The Multipurpose Unmanned Ground Vehicle. International Research Journal on Advanced Engineering Hub (IRJAEH), 2024, vol. 2, no. 06, pp. 1816–1820. DOI: 10.47392/IRJAEH.2024.0249.
Dinelli, C., Racette, J., Escarcega, M., Lotero, S., Gordon, J., Montoya, J., Dunaway, C., Androulakis, V., Khaniani, H., Shao, S., Roghanchi, P., & Hassanalian, M. (2023). Configurations and Applications of Multi-Agent Hybrid Drone/Unmanned Ground Vehicle for Underground Environments: A Review. Drones, 7(2), 136. https://doi.org/10.3390/drones7020136.
Ground robotic complexes. Available at: https://ela.kpi.ua/items/7c4da3db-0c7a-4614-b5ff-f8f278d211be (accessed 24.12.2024).
Zhang, Y., Shen, Y., Ma, G., Man, M., & Liu, S. Analysis of Electrostatic Discharge Interference Effects on Small Unmanned Vehicle Handling Systems. Electronics, 2023, vol. 12, no. 7, article no. 1640. DOI: 10.3390/electronics12071640.
Saliy, O., Hol, V., Divitskyi, A., & Khakhlyuk, O. A complete solution for anti-jaming radio data-link of an unmanned aerial vehicle. Collection Information technology and security, 2023, vol. 11, no. 2, pp. 251–265. DOI: 10.20535/2411-1031.2023.11.2.293939.
Zhao, C., Guo, L., Yan, Q., Chang, Z., & Chen, P. Path Tracking Control of Fixed-Wing Unmanned Aerial Vehicle Based on Modified Supertwisting Algorithm. International Journal of Aerospace Engineering, 2024. DOI: 10.1155/2024/5941107.
Won, J., Kim, D.-Y., & Lee, J.-W. Joint Optimization of Location, Beam, and Radio Resource for an Aerial Base Station With Controllable Directional Antennas. IEEE Internet of Things Journal, 2024, vol. 11, iss. 16, pp. 27571–27583. DOI: 10.1109/JIOT.2024.3399225.
Nugroho, G., & Dectaviansyah, D. Design, manufacture and performance analysis of an automatic antenna tracker for an unmanned aerial vehicle (UAV). Journal of Mechatronics, Electrical Power, and Vehicular Technology, 2018, vol. 9, no. 1, pp. 32–40. DOI: 10.14203/j.mev.2018.v9.32-40.
İşcan, M., Tas, A., Vural, B., Ozden, A., & Yilmaz, C. Antenna Tracker Design With A Discrete Lyapunov Stability Based Controller For Mini Unmanned Aerial Vehicles. International Journal of Multidisciplinary Studies and Innovative Technologies, 2022, vol. 6, no. 1, pp. 77–85. DOI: 10.36287/ijmsit.6.1.77.
Zdorenko, Y., Lavrut, O., Lavrut, T., & Nastishin, Y. Method of Power Adaptation for Signals Emitted in a Wireless Network in Terms of Neuro-Fuzzy System. Wireless Personal Communications, 2020, vol. 115, no. 1, pp. 597–609. DOI: 10.1007/s11277-020-07588-5.
Yanko, A., Krasnobayev, V., & Martynenko, A. Influence of the number system in residual classes on the fault tolerance of the computer system. Radioelectronic and Computer Systems, 2023, no. 3, pp. 159–172. DOI: 10.32620/reks.2023.3.13.
Krasnobayev, V., Yanko, A., Kovalchuk, D., & Fil, I. Synthesis of a Mathematical Model of a Fault-Tolerant Real-Time Computer System Operating in Non-positional Arithmetic in Residual Classes. In: Kazymyr, V., et al. Mathematical Modeling and Simulation of Systems. MODS 2023. Lecture Notes in Networks and Systems, 2024, vol. 1091, pp. 186–199. Springer, Cham. DOI: 10.1007/978-3-031-67348-1_14.
Mini Crossbow AutoAntennaTracker Manual V 1.17. Available at: https://distributions.com.ua/files/%D0%98%D0%BD%D1%81%D1%82%D1%80%D1%83%D0%BA%D1%86%D0%B8%D1%8F_%D0%BA_MFD-MINICBOW_%D0%A2%D1%80%D0%B5%D0%BA%D0%B5%D1%80_%D0%B0%D0%B2%D1%82%D0%BE%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_MFD_mini_Crossbow_%28%D0%B0%D0%BD%D0%B3%D0%BB.%29.pdf (accessed 23.09.2024).
Arkbird Mini AAT Manual. Available at: https://radioland.com.ua/files/%D0%98%D0%BD%D1%81%D1%82%D1%80%D1%83%D0%BA%D1%86%D0%B8%D1%8F_ARKT-02_%D0%90%D0%BD%D1%82%D0%B5%D0%BD%D0%BD%D1%8B%D0%B9_%D1%82%D1%80%D0%B5%D0%BA%D0%B5%D1%80_Arkbird_Mini_AAT_%28%D0%B0%D0%BD%D0%B3%D0%BB.%29.pdf (accessed 23.09.2024).
Laktionov, O., Lievi, L., Tretiak, A., & Movin, M. Investigation of combined ensemble methods for diagnostics of the quality of interaction of human-machine systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2023, no. 4, pp. 138–143. DOI: 10.33271/nvngu/2023-4/138.
Advanced hard and soft iron magnetometer calibration. diy drones. The Leading Community for Personal UAVs. Available at: https://diydrones.com/profiles/blogs/advanced-hard-and-soft-iron-magnetometer-calibration-for-dummies (accessed 23.09.2024).
Klapchuk, R., & Kharchenko, V. Monolith Web-Services And Microservices: Comparation And Selection. Radioelectronic and Computer Systems, 2017, no. 1, pp. 51–56. DOI: 10.32620/reks.2017.1.06.
Gozhyj, A., Kalinina, I., & Bidyuk, P. Systematic use of nonlinear data filtering methods in forecasting tasks. Applied Aspects of Information Technology, 2023, vol. 6, no. 4, pp. 345–361. DOI: 10.15276/aait.06.2023.23.
DOI: https://doi.org/10.32620/reks.2024.4.13
Refbacks
- There are currently no refbacks.