Methodology of deployment of dependable FPGA based artificial intelligence as a service
Abstract
Keywords
Full Text:
PDFReferences
Chi, T.-K. & et al. An Edge Computing System with AMD Xilinx FPGA AI Customer Platform for Advanced Driver Assistance System. Sensors, 2024, vol. 24, iss. 10, no. 3098. DOI: 10.3390/s24103098.
Perepelitsyn, A., Zarizenko, I. & Kulanov, V. FPGA as a Service Solutions Development Strategy. Proceedings 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies, DESSERT 2020, 2020, pp. 376-380, DOI: 10.1109/DESSERT50317.2020.9125017.
Perepelitsyn, A., Fesenko, H., Kasapien, Y. & Kharchenko, V. Technological Stack for Implementation of AI as a Service based on Hardware Accelerators. Proceedings 2022 IEEE 12th International Conference on Dependable Systems, Services and Technologies, DESSERT 2022, 2022, pp. 1-5. DOI: 10.1109/DESSERT58054.2022.10018615.
Perepelitsyn, A. Method of creation of FPGA based implementation of Artificial Intelligence as a Service. Radioelectronic and Computer Systems, 2023, no. 3, pp. 27–36. DOI: 10.32620/reks.2023.3.03.
Chun, C. -K. & Lai, K. -C. A Load Balance Scheduling Approach for Generative AI on Cloud-Native Environments with Heterogeneous Resources. Proceedings 2024 IEEE 10th International Conference on Applied System Innovation, ICASI 2024, 2024, pp. 223-225, DOI: 10.1109/ICASI60819.2024.10547947.
Kalapothas, S., Flamis, G. & Kitsos, P. Efficient Edge-AI Application Deployment for FPGAs. Information, 2022, vol. 13, iss. 6, no. 279. DOI: 10.3390/info13060279.
Alveo Product Selection Guide, Data Center Accelerator Cards, Xilinx. Available at: https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/alveo-product-selection-guide.pdf. (accessed July 24, 2024).
Zynq DPU Product Guide, Xilinx, PG338 (v3.3). Available at: https://docs.xilinx.com/r/3.3-English/pg338-dpu. (accessed February 28, 2023).
Perepelitsyn, A. & Kulanov, V. Technologies of FPGA-based projects Development Under Ever-changing Conditions, Platform Constraints, and Time-to-Market Pressure. Proceedings 2022 IEEE 12th Inter-national Conference on Dependable Systems, Services and Technologies, DESSERT 2022, 2022, pp. 1-5, DOI: 10.1109/DESSERT58054.2022.10018828.
Perepelitsyn, A., & Kulanov, V. Analysis of Ways of Digital Rights Management for FPGA-as-a-Service for AI-Based Solutions. Proceedings 2023 IEEE 13th International Conference on Dependable Systems, Services and Technologies, DESSERT 2023, 2023. pp. 1-5. DOI: 10.1109/DESSERT61349.2023.10416526.
IEEE Recommended Practice for Encryption and Management of Electronic Design Intellectual Property (IP). in IEEE Std 1735-2014 (Incorporates IEEE Std 1735-2014/Cor 1-2015), pp.1-90, 2015, DOI: 10.1109/IEEESTD.2015.7274481.
Tetskyi, A. Testuvannia na pronyknennia komponentiv FPGA yak servisu dlia zabezpechennia kiberbezpeky [Penetration testing of FPGA as a Service components for ensuring cybersecurity]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2023, no. 6, pp. 95–101. DOI: 10.32620/aktt.2023.6.11. (In Ukrainian).
Kolesnyk, I., Kulanov, V., Perepelitsyn, A. Markov model of FPGA resources as a service considering hardware failures. Proc. PhD Symposium at ICTERI 2018, Kyiv, Ukraine, May 14-17, 2018, CEUR-WS, vol. 2122, pp. 56-62.
Perepelitsyn, A., Kulanov, V. & Zarizenko, I. Method of QoS evaluation of FPGA as a service. Radioelectronic and Computer Systems, 2022, no. 4, pp. 153–160. DOI: 10.32620/reks.2022.4.12.
Shaker, M.N., Hussien, A., Alkady, G.I., Amer, H.H. & Adly, I. FPGA-Based Reliable Fault Secure Design for Protection against Single and Multiple Soft Errors. Electronics, 2020, vol. 9, iss. 12, no. 2064. DOI: 10.3390/electronics9122064.
Gowda, K.M.V., Madhavan, S., Rinaldi, S., Divakarachari, P.B. & Atmakur, A. FPGA-Based Reconfigurable Convolutional Neural Network Accelerator Using Sparse and Convolutional Optimization. Electronics 2022, vol. 11, iss. 10, no. 1653. DOI: 10.3390/electronics11101653.
Seng, K.P., Lee, P.J. & Ang, L.M. Embedded Intelligence on FPGA: Survey, Applications and Challenges. Electronics 2021, vol. 10, iss. 8, no. 895. DOI: 10.3390/electronics10080895.
Mehdi, I., Boudi, E.M. & Mehdi, M.A. Reliability, Availability, and Maintainability Assessment of a Mechatronic System Based on Timed Colored Petri Nets. Appl. Sci. 2024, vol. 14, iss. 11, no. 4852. DOI: 10.3390/app14114852.
Avizienis, A., Laprie, J., Randell, B. & Landwehr, C. Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 2004, vol. 1(1), pp. 11-33. DOI: 10.1109/TDSC.2004.2.
Gorbenko, A., Kharchenko, V. & Romanovsky, A. On composing Dependable Web Services using undependable web components. International Journal of Simulation and Process Modelling, 2007, vol. 3(1/2), pp. 45-54. DOI: 10.1504/IJSPM.2007.014714.
Kharchenko, V., Sklyar, V. & Siora, A. Dependability of Safety-Critical Computer Systems through Component-Based Evolution. 2009 Fourth International Conference on Dependability of Computer Systems, 2009, pp. 42-49. DOI: 10.1109/DepCoS-RELCOMEX.2009.22.
Ponochovnyi, Yu. & Kharchenko, V. Metodolohiya zabezpechennya harantozdatnosti informatsiynokeruyuchykh system z vykorystannyam bahatotsil'ovykh stratehiy obsluhovuvannya [Dependability assurance methodology of information and control systems using multipurpose service strategies]. Radioelektronni i komp'uterni sistemi – Radioelectronic and Computer Systems, 2020, no. 3, pp. 43–58. DOI: 10.32620/reks.2020.3.05. (In Ukrainian).
Beiu, V., Drăgoi, V. -F. & Beiu, R. -M. Why Reliability for Computing Needs Rethinking. Proceedings 2020 IEEE International Conference on Rebooting Computing ICRC 2020, 2020, pp. 16-25, DOI: 10.1109/ICRC2020.2020.00006.
Palem, K., Lingamneni, A., Enz, C. & Piguet, C. Why design reliable chips when faulty ones are even better. 2013 Proceedings of the ESSCIRC 2013, 2013, pp. 255-258, DOI: 10.1109/ESSCIRC.2013.6649121.
Kharchenko, V. S. Harantozdatni systemy ta bahatoversiyni obchyslennya: aspekty evolyutsiyi [Dependable systems and multiversion computing: aspects of evolution]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems. 2009, vol. 7, pp. 46-59.
Gorbenko, A., Kharchenko, V., Popov, P. & Romanovsky, A. Dependable Composite Web Services with Components Upgraded Online. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds). Architecting Dependable Systems III. Lecture Notes in Computer Science, 2005, vol. 3549, pp. 92–121. DOI: 10.1007/11556169_5.
Perepelitsyn, A., & Kulanov, V. Metod stvorennya i vprovadzhennya FPGA proyektiv stiykykh do zmin vymoh i seredovyshch rozroblennya dlya khmarnykh infrastruktur [Method of creation and deployment of FPGA projects resistant to change of requirements and development environments for cloud infrastructures]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2023, no. 5, pp. 87–97. DOI: 10.32620/aktt.2023.5.07. (In Ukrainian).
Vitis High-Level Synthesis User Guide, AMD, UG1399 (v2024.1). Available at: https://docs.amd.com /r/en-US/ug1399-vitis-hls/Combining-the-Three-Paradigms. (accessed July 24, 2024).
SDAccel Environment User Guide, Xilinx, UG1023 (v2019.1). Available at: https://www.xilinx.com /support/documents/sw_manuals/xilinx2019_1/ug1023-sdaccel-user-guide.pdf. (accessed July 24, 2024).
Vitis Unified Software Platform Documentation: Application Acceleration Development, AMD, UG1393 (v2024.1). Available at: https://docs.amd.com /r/en-US/ug1393-vitis-application-acceleration/Getting-Started-with-Vitis. (accessed July 24, 2024).
Vitis Unified IDE and Common Command-Line Reference Manual, AMD, UG1553 (v2023.1). Available at: https://docs.amd.com/r/en-US/ug1553-vitis-ide. (accessed July 24, 2024).
UltraFast Design Methodology Guide for Xilinx FPGAs and SoCs, Xilinx, UG949 (v2021.2). Available at: https://docs.xilinx.com/r/2021.2-English/ug949-vivado-design-methodology/SLR-Utilization-Considerations. (accessed February 28, 2023).
Ban, Y. Silicon Photonics for Scaling the Cloud and Enabling AI. Proceedings 2022 IEEE International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2022, 2022, pp. 1-1, DOI: 10.1109/VLSI-DAT54769.2022.9768090.
Ning, S. & et al. Photonic-Electronic Integrated Circuits for High-Performance Computing and AI Accelerators. in Journal of Lightwave Technology. 2024. pp. 1-26. DOI: 10.1109/JLT.2024.3427716.
Shakoorzadeh, N. & et al. Reliability Studies of Silicon Interconnect Fabric. Proceedings 2019 IEEE 69th Electronic Components and Technology Conference, ECTC 2019, 2019, pp. 800-805, DOI: 10.1109/ECTC.2019.00126.
Tossoun, B. & et al. Large-Scale Integrated Photonics for Energy-Efficient AI Hardware. Proceedings 2024 IEEE Photonics Society Summer Topicals Meeting Series SUM 2024, 2024, pp. 1-2, DOI: 10.1109/SUM60964.2024.10614557.
DOI: https://doi.org/10.32620/reks.2024.3.10
Refbacks
- There are currently no refbacks.