Developing information technology for evaluating and enhancing application-layer DDoS attack detection methods
Abstract
Keywords
Full Text:
PDFReferences
Simons, G., Danyk, Y., & Maliarchuk, T. Hy¬brid war and cyber-attacks: creating legal and operational dilemmas. Global Change, Peace & Security, 2020, vol. 32, no. 3, pp. 337–342. DOI: 10.1080/14781158.2020.1732899.
Uma, M., & Padmavathi, G. A Survey on Vari¬ous Cyber Attacks and their Classification. International Journal of Network Security, 2013, vol. 15, no. 5, pp. 390–396.
Kizzee, K. Cybersecurity: Cyber Attack Statis¬tics to Know. Parachute Technology. Available at: https://parachute.cloud/cyber-attack-statistics-data-and-trends/ (accessed 01.01.2024).
Cyber Dimensions of the Armed Conflict in Ukraine: Quarterly Analysis Report Q3 from July to Sep¬tember 2023. CyberPeace Institute. Available at: https://cyberpeaceinstitute.org/wp-content/uploads/2023/12/Cyber-Dimensions_Ukraine-Q3-2023.pdf (accessed 01.01.2024).
Ohsita, Y., Ata, S., & Murata, M. Detecting dis¬tributed denial-of-service attacks by analyzing TCP SYN packets statistically. IEICE transactions on communica¬tions, 2006, vol. 89, no. 10, pp. 2868–2877. DOI: 10.1093/ietcom/e89-b.10.2868.
Bogdanoski, M., Shuminoski, T., & Risteski, A. Analysis of the SYN Flood DoS Attack. In¬ternational Journal of Computer Network and Infor¬mation Security, 2013, vol. 5, no. 8, pp. 1–11. DOI: 10.5815/ijcnis.2013.08.01.
Boro, D., Basumatary, H., Goswami, T., & Bhattacharyya, D. K. UDP flooding attack detection us¬ing information metric measure. Proceedings of Interna¬tional Conference on ICT for Sustainable Development, 2016, vol. 408, pp. 143–153. DOI: 10.1007/978-981-10-0129-1_16.
Application layer DDoS attack: an overview. Cloudflare, Inc. Available at: https://www.cloudflare.com/learning/ddos/application-layer-ddos-attack/ (accessed 01.01.2024).
Mantas, G., Stakhanova, N., Gonzalez, H., Jazi, H. H., & Ghorbani, A. A. Application-layer denial of service attacks: taxonomy and survey. International Journal of Information and Computer Security, 2015, vol. 7, no. 2-4, pp. 216–239. DOI: 10.1504/ijics.2015.073028.
Kaur, P., Kumar, M., & Bhandari, A. A review of detection approaches for distributed denial of service attacks. Systems Science & Control Engineering, 2017, vol. 5, no. 1, pp. 301–320. DOI: 10.1080/21642583.2017.1331768.
No. G., & Ra, I. An efficient and reliable DDoS attack detection using a fast entropy computation method. International Symposium on Communications and Information Technology, 2009, pp. 1223–1228. DOI: 10.1109/iscit.2009.5341118.
Zhao, Y., Zhang, W., Feng, Y., & Yu, B. A classification detection algorithm based on joint entropy vector against application-layer DDoS attack. Security and Communication Networks, 2018, vol. 2018, article no. 9463653. 8 p. DOI: 10.1155/2018/9463653.
Laptyev, O. A., Buchyk, S. S., Savchen¬ko, V. A., Nakonechnyy, V. S., Mykhal'chuk, I. I., & Shestak, Ya. V. Vyyavlennya ta blokuvannya povil'nykh DDoS-atak za dopomohoyu prohnozuvannya povedinky korystuvacha [Detecting and blocking slow DDoS at¬tacks by predicting user behaviour]. Naukoyemni tekhnolohiyi – Science-intensive technologies, 2022, vol. 3, no. 55, pp. 184–192. DOI: 10.18372/2310-5461.55.16908. (In Ukrainian).
Dong, S., & Sarem, M. DDoS Attack Detection Method Based on Improved KNN With the Degree of DDoS Attack in Software-Defined Networks. IEEE Ac¬cess, 2020, vol. 8, pp. 5039–5048. DOI: 10.1109/access.2019.2963077.
Johnson Singh, K., Thongam, K., & De, T. En¬tropy-based application layer DDoS attack detection us¬ing artificial neural networks. Entropy, 2016, vol. 18, no. 10, article no. 350. 17 p. DOI: 10.3390/e18100350.
Muraleedharan, N., & Janet, B. A deep learning based HTTP slow DoS classification approach using flow data. ICT Express, 2021, vol. 7, no. 2, pp. 210–214. DOI: 10.1016/j.icte.2020.08.005.
Ring, M., Wunderlich, S., Scheuring, D., Landes, D., & Hotho, A. A survey of network-based in¬trusion detection data sets. Computers & Security, 2019, vol. 86, pp. 146–147. DOI: 10.1016/j.cose.2019.06.005.
Kumar, V., Kumar, K., & Mahadev. Classifica¬tion of DDoS attack tools and its handling techniques and strategy at application layer. In 2nd International Con¬ference on Advances in Computing, Communication, & Automation, 2016. 6 p. DOI: 10.1109/icaccaf.2016.7749002.
RUDY attack tool to perform slow-rate attacks. GitHub, Inc. Available at: https://github.com/darkweak/rudy (accessed 01.02.2024).
Slowloris HTTP denial of service attack tool in Python. GitHub, Inc. Available at: https://github.com/gkbrk/slowloris (accessed 01.02.2024).
SlowHTTPTest application layer denial of ser¬vice attacks tool. GitHub, Inc. Available at: https://github.com/shekyan/slowhttptest (accessed 01.02.2024).
PyDDoZ: DDoS tool using application layer (L7) attack techniques. GitHub, Inc. Available at: https://github.com/ProTechEx/pyddoz (accessed 01.02.2024).
Hulk (Http Unbearable Load King) DDoS at¬tacking tool. GitHub, Inc. Available at: https://github.com/grafov/hulk (accessed 01.02.2024).
GoldenEye Layer 7 DDoS test tool. GitHub, Inc. Available at: https://github.com/jseidl/GoldenEye (ac-cessed 01.02.2024).
Kravchuk, A. Source code of website “Rapid delivery”. GitHub, Inc. Available at: https://github.com/akrava/rapid-delivery/tree/mvc-ssr (accessed 01.02.2024).
Python CICFlowMeter: CICFlowMeter Python Implementation. GitHub, Inc. Available at: https://github.com/hieulw/cicflowmeter (accessed 01.02.2024).
Pyshark: Python wrapper for tshark, allowing python packet parsing. GitHub, Inc. Available at: https://github.com/KimiNewt/pyshark (accessed 01.02.2024).
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence re¬search, 2002, vol. 16, pp. 321–357. DOI: 10.1613/jair.953.
Sklearn: partial port of scikit-learn to go. GitHub, Inc. Available at: https://github.com/pa-m/sklearn (accessed 01.03.2024).
Go-deep: neural network implementation for deep learning. GitHub, Inc. Available at: https://github.com/patrikeh/go-deep (accessed 01.03.2024).
Gonum: set of numeric libraries for the Go pro¬gramming language. GitHub, Inc. Available at: https://github.com/gonum/gonum (accessed 01.03.2024).
Tiwari, V. R. Developments in KD Tree and KNN Searches. International Journal of Computer Ap-plications, 2023, vol. 185, no. 17, pp. 17–23. DOI: 10.5120/ijca2023922879.
Usage statistics of Default protocol https for websites. W3Techs. Available at: https://w3techs.com/technologies/details/ce-httpsdefault (accessed 01.03.2024).
Current State and Future of the Istio Service Mesh. Tetrate. Available at: https://7637559.fs1.hubspotusercontent-na1.net/hubfs/7637559/Istio%20Book/The-Current-State-and-Future-of-the-Istio-Service-Mesh.pdf (ac¬cessed 01.03.2024).
Shurupov, D. Kubernetes and containerization trends according to reports of 2021. Palark GmbH. Available at: https://blog.palark.com/kubernetes-and-containers-market-trends-2021/ (accessed 01.03.2024).
Toader, S. How to write WASM filters for Envoy and deploy it with Istio. Outshift by Cisco Systems, Inc. Available at: https://outshift.cisco.com/blog/envoy-wasm-filter (accessed 01.03.2024).
DOI: https://doi.org/10.32620/reks.2024.3.09
Refbacks
- There are currently no refbacks.