Formation of a heterogeneous group of UAVS with a reasonable number of false and real drones
Abstract
Keywords
Full Text:
PDFReferences
Sun, J., Yuan, G., Song, L., & Zhang, H. Unmanned Aerial Vehicles (UAVs) in Landslide Investigation and Monitoring: A Review. Drones, 2024, vol. 8, iss. 1, article no. 30. DOI: 10.3390/drones8010030.
Rudys, S., Laučys, A., Ragulis, P., Aleksiejūnas, R., Stankevičius, K., Kinka, M., Razgūnas, M., Bručas, D., Udris, D., & Pomarnacki, R. Hostile UAV Detection and Neutralization Using a UAV System. Drones, 2022, vol. 6, iss. 9, article no. 250. DOI: 10.3390/drones6090250.
Xia, Y., Batta, R., & Nagi, R. Controlling a Fleet of Unmanned Aerial Vehicles to Collect Uncertain Information in a Threat Environment. Operations Research, 2017, vol. 65, iss. 3, pp. ii-iv, 557-836. DOI: 10.1287/opre.2017.1590.
Al Younes, Y., & Barczyk, M. Adaptive Nonlinear Model Predictive Horizon Using Deep Reinforcement Learning for Optimal Trajectory Planning. Drones, 2022, vol. 6, iss. 11, article no. 323. DOI: 10.3390/drones6110323.
Phadke, A., & Medrano, F. A. Towards Resilient UAV Swarms – A Breakdown of Resiliency Requirements in UAV Swarms. Drones, 2022, vol. 6, iss. 11, article no. 340. DOI: 10.3390/drones6110340.
Li, J., & Chen, R. A Distributed Task Scheduling Method Based on Conflict Prediction for Ad Hoc UAV Swarms. Drones, 2022, vol. 6, iss. 11, article no. 356. DOI: 10.3390/drones6110356.
Liu, B., Wang, S., Li, Q., Zhao, X., Pan, Y., & Wang, C. Task Assignment of UAV Swarms Based on Deep Reinforcement Learning. Drones, 2023, vol. 7, iss. 5, article no. 297. DOI: 10.3390/drones7050297.
Su, Z.-L., Jiang, X.-L., Li, N., Ling, H.-F., & Zheng, Y.-J. Optimization of False Target Jamming against UAV Detection. Drones, 2022, vol. 6, iss. 5, article no. 114. DOI: 10.3390/drones6050114.
Khawaja, W., Yaqoob, Q., & Guvenc, I. RL-Based Detection, Tracking, and Classification of Malicious UAV Swarms through Airborne Cognitive Multibeam Multifunction Phased Array Radar. Drones, 2023, vol. 7, iss. 7, article no. 470. DOI: 10.3390/drones7070470.
Grosfils, P. Information Transmission in a Drone Swarm: A Temporal Network Analysis. Drones, 2024, vol. 8, iss. 1, article no. 28, DOI: 10.3390/drones8010028.
Prymirenko, V, Demianiuk, A., Shevtsov, R., Bazilo, S., & Steshenko, P. The impact of the joint use of false aircraft targets in a group of combat unmanned aerial vehicles on the results of destruction. Radioelectronic and Computer Systems, 2022, no. 3(103), pp. 132-140. DOI: 10.32620/reks.2022.3.10.
Li, B., Zhang, H., He, P., Wang, G., Yue, K., & Neretin, E. Hierarchical Maneuver Decision Method Based on PG-Option for UAV Pursuit-Evasion Game. Drones, 2023, vol. 7, iss. 7, article no. 449. DOI: 10.3390/drones7070449.
Shahid, S., Zhen, Z., Javaid, U., & Wen, L. Offense-Defense Distributed Decision Making for Swarm vs. Swarm Confrontation While Attacking the Aircraft Carriers. Drones, 2022, vol. 6, iss. 10, article no. 271. DOI: 10.3390/drones6100271.
Jia, N., Yang, Z,. Liao, T., Dou, Y., & Yang, K. A System Dynamics Model for Analyzing Swarming UAVs Air Combat System. 13th Annual Conference on System of Systems Engineering (SoSE), Paris, France, 2018, pp. 74-81. DOI: 10.1109/SYSOSE.2018.8428707.
Ferrari, J. F., & Chen, M. A mathematical model for tactical aerial search and rescue fleet and operation planning. International Journal of Disaster Risk Reduction, 2020, vol. 50, article no. 101680. DOI: 10.1016/j.ijdrr.2020.101680.
Su, W., Gao, M., Gao, X., & Xuan, Z. A Decision-Making Method for Distributed Unmanned Aerial Vehicle Swarm considering Attack Constraints in the Cooperative Strike Phase. International Journal of Aerospace Engineering, 2023, no. 2023, article no. 6568359. DOI: 10.1155/2023/ 6568359.
Zhang, C., Liu, T., Bai, G., Tao, J., & Zhu, W. A dynamic resilience evaluation method for cross-domain swarms in confrontation. Reliability Engineering & System Safety, 2024, vol. 244, article no. 109904. DOI: 10.1016/j.ress.2023.109904.
DOI: https://doi.org/10.32620/reks.2024.3.06
Refbacks
- There are currently no refbacks.
