Analysis of the impact of the contextual embeddings usage on the text classification accuracy
Abstract
Keywords
Full Text:
PDFReferences
Chowdhary, K. R. Natural Language Processing. In: Fundamentals of Artificial Intelligence. Springer. New Delhi, 2020, pp. 603-649. DOI: 10.1007/978-81-322-3972-7_19
Khurana, D., Koli, A., Khatter, K., & Singh, S. Natural language processing: state of the art, current trends and challenges. Multimed Tools Appl., 2023, vol. 82, pp. 3713–3744. DOI: 10.1007/s11042-022-13428-4.
Habib, M. A., Ema, R. R., Islam, T., Arafat, M. Y., & Hasan, M. Automatic text summarization based on extractive-abstractive method. Radioelectronic and Computer Systems, 2023, no. 2, pp. 5-17. DOI: 10.32620/reks.2023.2.01.
Patil, R., Boit, S., Gudivada, V., & Nandigam, J. A Survey of Text Representation and Embedding Techniques in NLP. IEEE Access, 2023, vol. 11. pp. 36120-36146. DOI: 10.1109/ACCESS.2023.3266377.
Birunda, S. S., & Devi, R. K. A Review on Word Embedding Techniques for Text Classification. In: Raj, J. S., Iliyasu, A. M., Bestak, R., Baig, Z. A. (eds) Innovative Data Communication Technologies and Application. Lecture Notes on Data Engineering and Communications Technologies, Springer, Singapore, 2021, vol. 59, pp. 267-281. DOI: 10.1007/978-981-15-9651-3_23.
Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao. J. Deep learning--based text classification: a comprehensive review. ACM computing surveys, 2021, vol. 54, iss. 3, article no. 62, pp. 1-40. DOI: 10.1145/3439726.
Dogra, V., Verma, S., Kavita, Chatterjee, P., Shafi, J., Choi, J., & Ijaz, M. F. A complete process of text classification system using state-of-the-art NLP models. Computational Intelligence and Neuroscience, 2022, vol. 2022, article no. 1883698. 26 p. DOI: 10.1155/2022/1883698.
Rakib Mollah, M. A., Jahangir Kabir, M. M., Reza, M. S., & Kabir, M. Adapting Contextual Embedding to Identify Sentiment of E-commerce Consumer Reviews with Addressing Class Imbalance Issues. 2024 International Conference on Advances in Computing. Communication. Electrical. and Smart Systems (iCACCESS), Dhaka, Bangladesh, 2024, pp. 1-6. DOI: 10.1109/iCACCESS61735.2024.10499554.
Lavanya, P., & Sasikala, E. Deep Learning Techniques on Text Classification Using Natural Language Processing (NLP) In Social Healthcare Network: A Comprehensive Survey. 2021 3rd International Conference on Signal Processing and Communication (ICPSC), Coimbatore, India, 2021, pp. 603-609. DOI: 10.1109/ICSPC51351.2021.9451752.
Spasic, I., Nenadic, G. Clinical Text Data in Machine Learning: Systematic Review. JMIR Med Inform, 2020; vol. 8, iss. 3, article no. e17984. DOI: 10.2196/17984.
Gupta, A., Dengre, V., Kheruwala, H. A., & Shah, M. Comprehensive review of text-mining applications in finance. Financ Innov, 2020, vol. 6, article no. 39. DOI: 10.1186/s40854-020-00205-1.
Lan, L., Huang, T., Li, Y., Song, Y. A Survey of Cross-Lingual Text Classification and Its Applications on Fake News Detection. World Scientific Annual Review of Artificial Intelligence, 2023, vol. 1, article no. 2350003. DOI: 10.1142/S2811032323500030.
Padalko, H., Chomko, V., Yakovlev, S., & Chumachenko, D. Ensemble machine learning approaches for fake news classification. Radioelectronic and Computer Systems, 2023, no. 4, pp. 5-19. DOI: 10.32620/reks.2023.4.01.
Li, R., Liu, M., Xu, D., Gao, J., Wu, F., & Zhu, L. A review of machine learning algorithms for text classification. In: Lu, W., Zhang, Y., Wen, W., Yan, H., Li, C. (eds) Cyber Security. CNCERT 2021. Communications in Computer and Information Science, Springer, Singapore, 2022, vol. 1506, pp. 226-234. DOI: 10.1007/978-981-16-9229-1_14.
Zhou, Y. A review of text classification based on deep learning. 3rd international conference on geoinformatics and data analysis, New York, USA, Association for Computing Machinery Publ., 2020, pp. 132-136. DOI: 10.1145/3397056.3397082.
Nandwani, P., & Verma, R. A review on sentiment analysis and emotion detection from text. Soc. Netw. Anal. Min., 2021, vol. 11, article no. 81. DOI: 10.1007/s13278-021-00776-6.
Pandya, S., & Mehta, P. A review on sentiment analysis methodologies, practices and applications. International Journal of Scientific and Technology Research, 2020, vol. 9, iss. 2, pp. 601-609. Available at: https://www.researchgate.net/publication/344487215_A_Review_On_Sentiment_Analysis_Methodologies_Practices_And_Applications (accessed 12/02/2024).
Barkovska, O. Performance study of the text analysis module in the proposed model of automatic speaker’s speech annotation. Computer systems and information technologies, 2022, no. 4, pp. 13-19. DOI: 10.31891/csit-2022-4-2.
Barkovska, O., Kholiev, V., Havrashenko, A., Mohylevskyi, D. & Kovalenko,A. A Conceptual Text Classification Model Based on Two-Factor Selection of Significant Words //COLINS (2). – 2023. – С. 244-255.
Barkovska, O., Khomych, V., & Nastenko, O. Research of the text processing methods in organization of electronic storages of information objects. Innovative technologies and scientific solutions for industries, 2022, no. 1(19), pp. 5-12. DOI: 10.30837/ITSSI.2022.19.005.
DOI: https://doi.org/10.32620/reks.2024.3.05
Refbacks
- There are currently no refbacks.