Smart surveillance using IoT: a review

Himani Sharma, Navdeep Kanwal

Abstract


In today’s modern society, video surveillance is a growing trend and it can revolutionize many aspects of technology, especially in future smart cities that will transform traditional surveillance systems into intelligent and interconnected networks. It may be difficult for even well-trained employees to process and respond immediately to monitored data. Moreover, IoT-enabled surveillance systems overcome the challenges and flaws of conventional passive monitoring techniques by offering real-time surveillance and automated notifications for suspicious activity, intrusions, or anomalies. Therefore, the objective of this article is to provide an Internet of Things (IoT)-based smart surveillance system that may successfully connect the ecosystem, resulting in enhanced monitoring for smart city services. The primary goal of this study is to provide a comprehensive review of several IoT-based surveillance techniques used in various smart city applications. The categorization of tasks for each section is as follows: to present the historical context overview; to examine the significance of IoT and its application in smart cities; to present a standardized architecture for IoT-based smart city surveillance; to highlight an authoritative and thorough review of current IoT-based smart surveillance systems; and to identify various research issues. The methods used are: statistical graph or chart approach, schematic, and timeline diagram. Conclusions. This article outlines numerous research challenges for future video surveillance that may be addressed by researchers. In summary, this comprehensive review provides a valuable and streamlined resource for future researchers exploring smart city surveillance through the IoT.

Keywords


Smart Cities; video surveillance system; Video Forgery Detection; IoT Architecture

Full Text:

PDF

References


Rahman, M. A., Asyhari, A. T., Leong, L. S., Satrya, G. B., Hai Tao, M., & Zolkipli, M. F. Scalable machine learning-based intrusion detection system for IoT-enabled smart cities. Sustain. Cities Soc., 2020, vol. 61, article no. 102324. DOI: 10.1016/j.scs.2020.102324.

Sharma, N., Shamkuwar, M., & Singh, I. The history, present and future with IoT. Intelligent Systems Reference Library Internet of Things and Big Data Analytics for Smart Generation, Springer, 2018, vol. 154, pp. 27-51. Available at: https://ouci.dntb.gov.ua/works/73pqrnX4/ (accessed 15 June 2023).

Li, S., Da Xu, L., & Zhao, S. The internet of things: a survey. Inf. Syst. Front., 2015, vol. 17, no. 2, pp. 243-259. Available at: https://ideas.repec.org/a/spr/infosf/v17y2015i2d10.1007_s10796-014-9492-7.html (accessed 15 June 2023).

Hong, N., & Xuefeng, Z. A security framework for Internet of Things based on SM2 cipher algorithm. International Conference on Computational and Information Sciences, ICCIS 2013, 2013, pp. 13-16. DOI: 10.1109/ICCIS.2013.12.

Khan, Z., Anjum, A., Soomro, K., & Tahir, M. A. Towards cloud based big data analytics for smart future cities. Journal of Cloud Computing, 2015, vol. 4, no. 1, article no. 2, pp. 381-386. DOI: 10.1186/s13677-015-0026-8.

Ahamad, R., & Mishra, K. N. Hybrid approach for suspicious object surveillance using video clips and UAV images in cloud-IoT-based computing environment. Cluster Computing, 2023, pp. 1-25. Available at: https://ouci.dntb.gov.ua/en/works/96wD2wo7/ (accessed 15 June 2023).

Barannik, V., Krasnorutsky, A., Kolesnik, V., Barannik, V., Pchelnikov, S., & Zeleny, P. Method of Compression and Ensuring the Fidelity of Video Images in Infocommunication Networks. Radioelectron. Comput. Syst., 2022, no. 4, pp. 129-142. DOI: 10.32620/reks.2022.4.10.

Xu, L. D., He, W., & Li, S. Internet of things in industries: A survey. IEEE Trans. Ind. Informatics, 2014, vol. 10, no. 4, pp. 2233-2243. DOI: 10.1109/TII.2014.2300753.

Jia, X., Feng, Q., Fan, T., & Lei, Q. RFID technology and its applications in Internet of Things (IoT). 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), Yichang, China, 2012, pp. 1282-1285. DOI: 10.1109/CECNet.2012.6201508.

Li, S., Xu, L. D., & Wang, X. Compressed sensing signal and data acquisition in wireless sensor networks and Internet of Things. IEEE Trans. Ind. Informatics, 2013, vol. 9, no. 4, pp. 2177-2186. DOI: 10.1109/TII.2012.2189222.

He, W., & Xu, L. D. Integration of distributed enterprise applications: A survey. IEEE Trans. Ind. Informatics, 2014, vol. 10, no. 1, pp. 35-42. DOI: 10.1109/TII.2012.2189221.

Ashton, K. That ‘Internet of Things’ Thing. RFID J., 2009, vol. 22, no. 7, pp. 97-114. Available at: http://www.rfidjournal.com/articles/view?4986 (accessed 15 June 2023).

Shen, G., & Liu, B. The visions, technologies, applications and security issues of Internet of Things. International Conference on E-Business and E-Government (ICEE), Shanghai, China, 2011, pp. 1867–1870. DOI: 10.1109/ICEBEG.2011.5881892.

Gibson, D. V., Kozmetsky, G., & Smilor, R. W. The Technopolis Phenomenon: Smart Cities, Fast Systems, Global Networks. Rowman & Littlefield Publishers, 1992. 234 p. ISNB: 9780847677580.

Vinod Kumar, T. M. Smart environment for smart cities. Advances in 21st Century Human Settlements. Springer, 2020, pp. 1-53. ISBN: 978-9811368219.

Kulkarni, P. Evolution of Internet of Things (IoT) - A Brief History. Available at: https://bytebeam.io/blog/a-brief-history-of-internet-of-things/ (accessed 15 June 2023).

Yaqoob, I., Ahmed, E., Hachem, I. A. T., Ahmed, A. I. A., Gani, A., Imran, M., & Guizani, M. Internet of Things architecture: Recent advances, taxonomy, requirements, and open challenges. IEEE Wirel. Commun., 2017, vol. 24, iss. 3, pp. 10-16. DOI: 10.1109/MWC.2017.1600421.

Wu, M., Lu, T.-J., Ling, F.-Y., Sun, J., & Du, H.-Y. Research on the architecture of Internet of Things. 3rd international conference on advanced computer theory and engineering (ICACTE), Chengdu, 2010, vol. 5, pp. V5-484 - V5-487. DOI: 10.1109/ICACTE.2010.5579493.

Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J., Paraszczak, J., & Williams, P. Foundations for Smarter Cities. IBM J. Res. Dev., 2010, vol. 54, iss. 4, pp. 1-16. DOI: 10.1147/JRD.2010.2048257.

Syed, A. S., Sierra-Sosa, D., Kumar, A., & Elmaghraby, A. IoT in smart cities: A survey of technologies, practices and challenges. Smart Cities, 2021, vol. 4, no. 2, pp. 429-475. DOI: 10.3390/smartcities4020024.

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Communications Surveys & Tutorials, Fourthquarter, 2015, vol. 17, no. 4, pp. 2347-2376. DOI: 10.1109/COMST.2015.2444095.

Zhang, M., Sun, F., & Cheng, X. Architecture of Internet of Things and its key technology integration based-on RFID. 5th International Symposium on Computational Intelligence and Design, ISCID 2012, Hangzhou, China, 2012, vol. 1, pp. 294-297. DOI: 10.1109/ISCID.2012.81.

Kassab, W., & Darabkh, K. A. A-Z survey of Internet of Things: Architectures, protocols, applications, recent advances, future directions and recommendations. Journal of Network and Computer Applications, 2020, vol. 163, article no. 102663. DOI: 10.1016/j.jnca.2020.102663.

Xie, J., Tang, H., Huang, T., Yu, F. R., Xie, R., Liu, J., & Liu, Y. A Survey of Blockchain Technology Applied to Smart Cities: Research Issues and Challenges. IEEE Communications Surveys & Tutorials, 2019, vol. 21, no. 3, pp. 2794-2830. DOI: 10.1109/COMST.2019.2899617.

Zhang, K., Ni, J., Yang, K., Liang, X., Ren, J., & Shen, X. S. Security and Privacy in Smart City Applications: Challenges and Solutions. IEEE Communications Magazine, 2017, vol. 55, no. 1, pp. 122-129. DOI: 10.1109/MCOM.2017.1600267CM.

Al Zamil, M. G. H., Samarah, S. M. J., Rawashdeh, M., & Hossain, M. A. An ODT-based abstraction for mining closed sequential temporal patterns in IoT-cloud smart homes. Cluster Comput., 2017, vol. 20, no. 2, pp. 1815-1829. DOI: 10.1007/s10586-017-0837-0.

Hou, L., Zhao, S., Xiong, X., Zheng, K., Chatzimisios, P., Hossain, M. S., & Xiang, W. Internet of Things Cloud: Architecture and Implementation. IEEE Communications Magazine, 2016, vol. 54, no. 12, pp. 32-39. DOI: 10.1109/MCOM.2016.1600398CM.

Myagmar-Ochir, Y., & Kim, W. A survey of video surveillance systems in smart city. Electronics, 2023, vol. 12, no. 17, article no. 3567. DOI: 10.3390/electronics12173567.

Raju, J. V. N., & Harini, P. Smart Video Security Surveillance with Mobile Remote Control. International Journal of Emerging Trends in Engineering Research, 2015, vol. 3. no. 10, pp. 169-173. Available at: http://www.warse.org/IJETER/static/pdf/Issue/icacsse2015sp30.pdf (accessed 15 June 2023).

Anagnostopoulos, T., Kostakos, P., Zaslavsky, A., Kantzavelou, I., Tsotsolas, N., & Salmon, I. Challenges and solutions of surveillance systems in IoT-enabled smart campus: a survey. IEEE Access, 2021, vol. 9, pp. 131926-131954. DOI: 10.1109/ACCESS.2021.3114447.

Rao, B. N., & Sudheer, R. Surveillance camera using IoT and Raspberry Pi. Second International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 2020, pp. 1172-1176. DOI: 10.1109/ICIRCA48905.2020.9182983.

Jeličić, V., Magno, M., Brunelli, D., Bilas, V., & Benini, L. An energy efficient multimodal wireless video sensor network with eZ430-RF2500 modules. 5th International Conference on Pervasive Computing and Applications (ICPCA10), Maribor, Slovenia, 2010, pp. 161-166. DOI: 10.1109/ICPCA.2010.5704091.

Saraceni, S., Claudi, A., & Dragoni, A. F. An active monitoring system for real-time face-tracking based on mobile sensors. Proceedings Elmar - International Symposium Electronics in Marine, 2012, pp. 53-56. Available at: https://www.researchgate.net/publication/235965503_An_Active_Monitoring_System_for_Real-Time_Face-Tracking_based_on_Mobile_Sensors (accessed 15 June 2023).

Mekonnen, T., Harjula, E., Koskela, T., & Ylianttila, M. SleepyCAM: Power management mechanism for wireless video-surveillance cameras. IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France, 2017, pp. 91-96. DOI: 10.1109/ICCW.2017.7962639.

Mekonnen, T., Harjula, E., Heikkinen, A., Koskela, T., & Ylianttila, M. Energy Efficient Event Driven Video Streaming Surveillance Using SleepyCAM. IEEE International Conference on Computer and Information Technology (CIT), Helsinki, Finland, 2017, pp. 107-113. DOI: 10.1109/CIT.2017.10.

Nath, R. K., Bajpai, R., & Thapliyal, H. IoT based indoor location detection system for smart home environment. IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 2018, pp. 1-3. DOI: 10.1109/ICCE.2018.8326225.

Gallo, P., Pongnumkul, S., & Nguyen, U. Q. BlockSee: Blockchain for IoT Video Surveillance in Smart Cities. IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe, (EEEIC/I & CPS Europe), Palermo, Italy, 2018, pp. 1-6. DOI: 10.1109/EEEIC.2018.8493895.

Mao, L., Sheng, F., & Zhang, T. Face Occlusion Recognition with Deep Learning in Security Framework for the IoT. IEEE Access, 2019, vol. 7, pp. 174531–174540. DOI: 10.1109/ACCESS.2019.2956980.

AL Zamil, M. G. H., Samarah, S., Rawashdeh, M., Karime, A., & Hossain, M. S. Multimedia-oriented action recognition in Smart City-based IoT using multilayer perceptron. Multimed. Tools Appl., 2019, vol. 78, no. 21, pp. 30315-30329. DOI: 10.1007/s11042-018-6919-z.

Roque, G., & Padilla, V. S. LPWAN Based IoT Surveillance System for Outdoor Fire Detection. IEEE Access, 2020, vol. 8, pp. 114900-114909. DOI: 10.1109/ACCESS.2020.3003848.

Desnanjaya, I. G. M. N., & Arsana, I. N. A. Home security monitoring system with IoT-based Raspberry Pi. Indones. J. Electr. Eng. Comput. Sci., 2021, vol. 22, no. 3, pp. 1295-1302. DOI: 10.11591/ijeecs.v22.i3.pp1295-1302.

Ravikumar, S., & Kavitha, D. RETRACTED ARTICLE: IoT based home monitoring system with secure data storage by Keccak–Chaotic sequence in cloud server. J. Ambient Intell. Humaniz. Comput., 2021, vol. 12, no. 7, pp. 7475-7487. DOI: 10.1007/s12652-020-02424-x.

Suhaimi, A. F., Yaakob, N., Ali Saad, S., Sidek, K. A., Elshaikh, M. E., Dafhalla, A. K. Y., Lynn, O. B., & Almashor, M. IoT Based Smart Agriculture Monitoring, Automation and Intrusion Detection System. Journal of Physics: Conference Series, The 1st International Conference on Engineering and Technology (ICoEngTech) 15-16 March 2021, Perlis, Malaysia, 2021, vol. 1962, no. 1, article no. 12016. DOI: 10.1088/1742-6596/1962/1/012016.

Kumar, M., Raju, K. S., Kumar, D., Goyal, N., Verma, S., & Singh, A. An efficient framework using visual recognition for IoT based smart city surveillance. Multimed. Tools Appl., 2021, vol. 80, no. 20, pp. 31277-31295. DOI: 10.1007/s11042-020-10471-x.

Altowaijri, A. H., Alfaifi, M. S., Alshawi, T. A., Ibrahim, A. B., & Alshebeili, S. A. A privacy-preserving IoT-based fire detector. IEEE Access, 2021, vol. 9, pp. 51393-51402. DOI: 10.1109/ACCESS.2021.3069588.

Safi, A., Ahmad, Z., Jehangiri, A. I., Latip, R., Zaman, S. K. U., Khan, M. A., & Ghoniem, R. M. A Fault Tolerant Surveillance System for Fire Detection and Prevention Using LoRaWAN in Smart Buildings. Sensors, 2022, vol. 22, no. 21, article no. 8411. DOI: 10.3390/s22218411.

Rajavel, R., Ravichandran, S. K., Harimoorthy, K., Nagappan, P., & Gobichettipalayam, K. R. IoT-based smart healthcare video surveillance system using edge computing. J. Ambient Intell. Humaniz. Comput., 2022, vol. 13, no. 6, pp. 3195-3207. DOI: 10.1007/s12652-021-03157-1.

Islam, M., Dukyil, A. S., Alyahya, S., & Habib, S. An IoT Enable Anomaly Detection System for Smart City Surveillance. Sensors, 2023, vol. 23, no. 4, article no. 2358. DOI: 10.3390/s23042358.

Meddeb, H., Abdellaoui, Z., & Houaidi, F. Development of surveillance robot based on face recognition using Raspberry-PI and IoT. Microprocess. Microsyst., 2023, vol. 96, article no. 104728. DOI: 10.1016/j.micpro.2022.104728.

Greene, S., Thapliyal, H., & Carpenter, D. IoT-Based fall detection for smart home environments. IEEE International Symposium on Nanoelectronic and Information Systems (INIS), Gwalior, India, 2016, pp. 23-28. DOI: 10.1109/iNIS.2016.017.




DOI: https://doi.org/10.32620/reks.2024.1.10

Refbacks

  • There are currently no refbacks.